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LETTER FROM THE EDITOR

We begin with two articles about applications—to polls and to populations.
Andrew Gelman and Nate Silver tell us how to predict the result of a presidential

election during the first hours of the vote count. Their model uses the final polling
results for each state, and takes into account the correlations among the separate
polling “errors” (which might include last-minute swings). Thus, learning that one
state has moved in a particular direction can increase the probability that other states
have moved in the same direction. From the earliest reported results, they construct
ever-tighter probability distributions for the final electoral vote.

Is there a reader who can apply the same methods to the 2010 congressional
elections? Your goal would be to say which party controls each house by, say, 9 or
10 PM on November 2. Post your results ahead of the networks and win fame and
fortune!

Population dynamics is the subject of an article by a team from Richard Rebarber’s
REU group at the University of Nebraska. They describe population models for plant
and animal species. Many of us have seen transition matrices used for this purpose,
when populations can be partitioned naturally into age or size classes. But what if
the distribution is naturally continuous? This team shows how integral models can
be used in these cases, and how they compare to their discrete analogs.

The third article, by William Adkins and Mark Davidson, gives us a computational
method that might be useful in many applications. How many of us, seeing the linear
system y ′ = Ay, have wanted to write the answer y = exp(At) and be done with it?
Alas, computing exp(At) requires serious attention!

Nicole Oresme reappears on page 327. His work in the 14th century helped us to
understand balls rolling down inclined planes, but he might have been alarmed by
the device that Stan Wagon describes in the Notes section. Elsewhere in the Notes
section you can find the name of an effective middle-school teacher, quotations from
Euclid and Gauss, and the first proof that the real numbers are uncountable (not
diagonalization!). If you are looking for the answer to the puzzle in our last issue
about a Tower-of-Hanoi graph, start on page 257.

The Olympiads This issue contains the problems and solutions for both the US-
AMO and the IMO. We also have the problems and solutions for the USAJMO—the
USA Junior Mathematical Olympiad, for students in 10th grade and below—which
was given for the first time this year. The USAMO, USAJMO, and US participation
in the IMO are programs of the MAA, carried out by the staff of the MAA’s Lincoln,
Nebraska office and volunteers led by the MAA’s Committee on the American Math-
ematical Competitions.

These features have appeared in the MAGAZINE every year, but this year we are
bringing them to you more quickly. Thanks to the authors, who met tight deadlines.

The Allendoerfer Awards We are also pleased to honor the winners of the 2010
Carl B. Allendoerfer Awards, for articles published in this MAGAZINE during 2009.
The winners are Ezra Brown, Keith Mellinger, David Speyer, and Bernd Sturmfels.

Walter Stromquist, Editor

242



ARTICLES
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Will an exotic species thrive in a new territory? What are the best management options
to eradicate a population (pest species) or to facilitate population recovery (endangered
species)? Population modeling helps answer these questions by integrating mathemat-
ics and biology.

Often, a single species cannot be properly modeled as one population, but instead
is best treated as a structured population, where the individuals in the population are
partitioned into classes, or stages. As an example of a stage structured population, it
is natural to partition an insect population into egg, larva, pupa, and adult stages. The
choice of the stages and the breakdown of the population into stages depend heavily on
the type of population, and are informed by biological intuition. For instance, fecundity
(number of offspring per capita) in animals often varies with age, while in plants,
fecundity typically depends on size. This implies that for mammals, the stages might
be best determined by age, so that age is a good stage variable for mammals, while
size might be a good stage variable for plants. Furthermore, for many animals there are
natural classes of ages—the egg/larva/pupa/adult partition of an insect population—
while for many plants, the stages can be better described as a continuous function
of stem diameter, or another indicator of size. When the stages are discrete, a matrix
model is used, and when the stages are continuous, an integral model is used. Both
integral and matrix models are commonly used in population viability analysis and
are both important tools in guiding population management [4, 19]. These models
are used to predict long-term and transient behavior of a population, and they inform
wildlife managers about which populations are in danger of going extinct or of growing
unacceptably large.

Another basic modeling choice is whether time is modeled as a discrete variable
or a continuous variable. Field data is often collected at regular time intervals, for

Math. Mag. 83 (2010) 243–257. doi:10.4169/002557010X521778. c© Mathematical Association of America
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instance on a yearly or seasonal basis, so it is often easier and more practical to model
time discretely. There is some controversy about the relative merits of discrete-time
versus continuous-time modeling [7]. Nonetheless, in most of the ecological literature
on single-species structured populations, time is modeled as a discrete variable, so in
this article we also model time as a discrete variable.

For a population that is partitioned into finitely many stages and modeled at discrete
times, the evolution of the population can often be described using a Population Pro-
jection Matrix (PPM). The entries in a PPM are determined by the life history param-
eters of the population, and the properties of the matrix—for instance, its spectrum—
determine the behavior of the solutions of the model. In the next section we describe
PPMs in detail.

When stages are described by a continuous variable, one can either maintain the
continuous stage structure, or partition the continuous range of stages into a finite
number of stages. The latter is called a discretization of the population. To do it effec-
tively one must ensure that each stage consists of individuals with comparable growth,
survival, and fecundity, because the accuracy of the approximation depends on the sim-
ilarity of individuals within each stage class. In general, a large number of life history
stages increases model accuracy, but at the cost of increasing parameter uncertainty,
since each nonzero matrix entry needs to be estimated from data, and the more stages
there are, the less data is available per stage. This tradeoff can often be avoided by
maintaining the continuous structure, and using an Integral Projection Model (IPM)
that uses continuous life history functions that are functions of a continuous range of
stages. We discuss IPMs in detail below.

In this article we illuminate the differences and similarities between matrix popu-
lation models and integral population models for single-species stage structured pop-
ulations. We illustrate the use of integral models with an application to Platte thistle,
following Rose et al. [22], showing how the model is determined by basic life history
functions. PPMs are ubiquitous in ecology, but for many purposes an IPM might be
easier and/or more accurate to use. In TABLE 1 we summarize the similarities between
PPMs and IPMs. In order to compare the predictions for PPMs and IPMs, enough data
must be available to find the parameters in both models. This is done for models for the
plant monkshood in Easterling et al. [9]. We should mention that if time is treated as a
continuous variable, the analogue of a PPM model is an ordinary differential equation,
and the analogue of a IPM is an integro-differential equation.

Matrix models

Matrix models were introduced in the mid 1940s, but did not become the dominant
paradigm in ecological population modeling until the 1970s. The modern theory is
described in great detail in Caswell [4], which also contains a good short history of
population projection matrices in its Section 2.6. We summarize some of this history
here. The basic theory of describing, predicting, and analyzing population growth by
analyzing life history parameters such as survival and fecundity can be traced back
to Cannan [3] in 1895. Matrix models in particular were developed independently by
Bernardelli [2], Lewis [16], and Leslie [15]. The latter is most relevant to the mod-
ern theory. P. H. Leslie was a physiologist and self-taught mathematician, who, while
working at the Bureau of Animal Population at Oxford between 1935 and 1968, syn-
thesized mortality and fertility data into single models using matrices. We briefly de-
scribe his basic models, which are still used for population description, analysis, and
prediction.

Although he was highly regarded and well connected in the ecology community,
Leslie’s work in matrix modeling initially received little attention. One of the few



VOL. 83, NO. 4, OCTOBER 2010 245

TA
B

LE
1:

C
om

pa
ri

so
n

of
m

at
ri

x
an

d
in

te
gr

al
m

od
el

s

P
op

ul
at

io
n

P
ro

je
ct

io
n

M
at

ri
x

In
te

gr
al

P
ro

je
ct

io
n

M
od

el

ve
ct

or
en

tr
y

n(
i,

t)
nu

m
be

r
of

in
di

vi
du

al
s

in
st

ag
e

cl
as

s
i

at
tim

e
t

co
nt

in
uo

us
fu

nc
tio

n

∫ y
1

y 0

n(
y,

t)
d

y
nu

m
be

r
of

in
di

vi
du

al
s

ex
pe

ct
ed

be
tw

ee
n

si
ze

s
y 0

an
d

y 1

st
at

e
ve

ct
or

n(
t)

=
[n

(1
,

t)
,
···

,
n(

m
,
t)

]T
∈R

m
st

ag
e

di
st

ri
bu

tio
n

of
po

pu
la

tio
n

at
tim

e
t

co
nt

in
uo

us
st

at
e

fu
nc

tio
n

n(
·,t

)
∈L

1
(m

s,
M

s)

st
ag

e
di

st
ri

bu
tio

n
of

po
pu

la
tio

n
at

tim
e

t

pr
ob

ab
ili

ty
p i

j

pr
ob

ab
ili

ty
of

an
in

di
vi

du
al

tr
an

si
tio

ni
ng

fr
om

cl
as

s
j

to
i

pr
ob

ab
ili

ty
de

ns
ity

fu
nc

tio
n

∫ y
1

y 0

p(
y,

x)
d

y

pr
ob

ab
ili

ty
an

in
di

vi
du

al
of

si
ze

x
w

ill
gr

ow
an

d
su

rv
iv

e
to

a
si

ze
be

tw
ee

n
y 0

an
d

y 1

sc
al

ar
f i

j

nu
m

be
r

of
ne

w
bo

rn
s

si
ze

i
fr

om
pa

re
nt

s
si

ze
j

fu
nc

tio
n

∫ y
1

y 0

f(
y,

x)
d

y
nu

m
be

r
of

ne
w

bo
rn

s
be

tw
ee

n
si

ze
s

y 0
an

d
y 1

fr
om

pa
re

nt
s

of
si

ze
x

m
at

ri
x

en
tr

y
k i

j
=

p i
j
+

f i
j

th
e

ij
th

en
tr

y
of

th
e

tr
an

si
tio

n
m

at
ri

x
fu

nc
tio

n
k(

y,
x)

=
p(

y,
x)

+
f(

y,
x)

ke
rn

el

m
at

ri
x

A
=

[ k i
j]

in
te

gr
al

op
er

at
or

(
A
v
)(

y)
=

∫ M
s

m
s

k(
y,

x)
v
(x

)
d

x

di
sc

re
te

st
ag

e
va

ri
ab

le
s

j
∼

t
an

d
i
∼

t
+

1
m

at
ri

x
in

di
ce

s
as

so
ci

at
ed

w
ith

tim
e

t
an

d
tim

e
t
+

1

co
nt

in
uo

us
st

ag
e

va
ri

ab
le

s
x

∼
t

an
d

y
∼

t
+

1
va

ri
ab

le
s

as
so

ci
at

ed
w

ith
tim

e
t

an
d

tim
e

t
+

1

di
ff

er
en

ce
eq

ua
tio

n
n(

j,
t
+

1)
=

m ∑ i=
1

k
ji

n(
i,

t)
in

te
gr

al
eq

ua
tio

n
n(

y,
t
+

1)
=

∫ M
s

m
s

k(
y,

x)
n(

x,
t)

d
x

ve
ct

or
fo

rm
n(

t+
1)

=
A

n(
t)

m
at

ri
x

m
ul

tip
lic

at
io

n
op

er
at

or
fo

rm
n(

t
+

1)
=

A
n(

t)
in

te
gr

at
io

n



246 MATHEMATICS MAGAZINE

contemporaries who did use the matrix model was Leonard Lefkovitch. He also imple-
mented a matrix model [14], but with an innovation: The populations were partitioned
into classes based on developmental stage rather than age. This made the method more
applicable to plant ecologists, who began defining stage classes by size rather than
age—a change that usually resulted in better predictions.

As Caswell points out [4], it took some 25 years for the ecology community to
adopt matrix projection models after Leslie’s influential work. There were two major
reasons for this delay. The ecology community at that time thought of matrix algebra
as an advanced and esoteric mathematical subject. More importantly, there was a more
accessible method, also contributed by Leslie, called life table analysis [4, Section
2.3].

Before the widespread use of computers, there was no information that a matrix
model could provide that a life table could not. This would change as more sophisti-
cated matrix algebra and computation methods emerged to convince ecologists of the
worth of matrix models. For instance, using elementary linear algebra, one can predict
asymptotic population growth rates and stable stage distributions from the spectral
properties of the matrix. Also, the use of eigenvectors facilitated the development of
sensitivity and elasticity analyses, giving an easy way to determine how small changes
in life history parameters effect the asymptotic population growth rate. This is an es-
pecially important question for ecological models, which are typically very uncertain.
Sensitivity and elasticity analyses are sometimes used to make recommendations about
which stage class conservation managers should focus on in order to increase the pop-
ulation growth rate of an endangered species.

Transition matrices To set up a matrix model we start with a population partitioned
into m stage classes. Let t ∈ N = {0, 1, 2, . . . } be time, measured discretely, and let
n(t) be the population column vector

n(t) = [n(1, t), n(2, t), . . . , n(m, t)]T ,

where each entry n(i, t) is the number of individuals belonging to class i at time t . A
discrete-time matrix model takes the form

n(t + 1) = An(t), (1)

where A = (ki j) is the m × m PPM containing the life-history parameters. It is also
called a transition matrix, since it dictates the demographic changes occurring over
one time step. We can write (1) as

n(i, t + 1) =
m∑

j=1

ki j n( j, t), i = 1, . . . n. (2)

The entry ki j determines how the number of stage j individuals at time t affects the
number of stage i individuals at time t + 1. This is the form we will generalize when
we discuss integral equations.

In their simplest form, the entries of A are survivorship probabilities and fecundi-
ties. What we call a Leslie matrix has the form

A =

⎛
⎜⎜⎜⎜⎝

f1 f2 · · · fm−1 fm

p1 0 · · · 0 0
0 p2 · · · 0 0
... 0

. . . 0 0
0 · · · · · · pm−1 0

⎞
⎟⎟⎟⎟⎠ ,
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where pi is the probability that an individual survives from age class i to age class
i + 1, and fi is the fecundity, which is the per capita average number of offspring
reaching stage 1 born from mothers of stage class i . The transition matrix has this
particular structure when age is the stage class variable and individuals either move
into the next class or die. In general, entries for the life-history parameters may appear
in any entry of the m x m matrix A.

For any matrix A and t ∈ N, let At denote the t th power of A for any natural number
t . It follows from (1) that

n(t) = At n(0). (3)

The long-term behavior of n(t) is determined by the eigenvalues and eigenvectors of A.
We say that A is nonnegative if all of its entries are nonnegative, and that A is primitive
if for some t ∈ N, all entries of At are positive. This second condition is equivalent to
every stage class having a descendent in every other stage class at some time step in
the future. PPMs are generally nonnegative and primitive, thus the following theorem
is extremely useful [23, Section 1.1]:

PERRON-FROBENIUS THEOREM. Let A be a square, nonnegative, primitive ma-
trix. Then A has an eigenvalue, λ, known as the dominant eigenvalue, that satisfies:

1. λ is real and λ > 0,
2. λ has right and left eigenvectors whose components are strictly positive,
3. λ > |λ̃| for any eigenvalue λ̃ such that λ̃ �= λ,
4. λ has algebraic and geometric multiplicity 1.

This theorem is important in the analysis of population models because the domi-
nant eigenvalue is the asymptotic growth rate of the modeled population, and its asso-
ciated eigenvector is the asymptotic population structure. To see this, assume that A is
primitive. Let n = [n1, n2, . . . , nm], and ‖n‖ denote the �1 norm:

‖n‖ = |n1| + |n2| + . . . |nm|. (4)

Denote the unit eigenvector associated with λ by v , so

lim
t→∞

‖n(t + 1)‖
‖n(t)‖ = λ and lim

t→∞
n(t)

‖n(t)‖ = v. (5)

Thus as time goes on, the growth rate approaches λ and the stage structure approaches
v. In particular, the dynamics of a long-established population is described by λ and v.

Problems with stage discretization To use a population projection matrix model,
the population needs to be decomposed into a finite number of discrete stage classes
that are not necessarily reflective of the true population structure. As mentioned pre-
viously, if stage classes are defined in such a way that there is at least one class in
which the life history parameters vary considerably, then it might not be possible to
accurately describe individuals in that stage class, which might result in erroneous
predictions. Easterling [8] and Easterling et al. [9] give an example of such a “bad”
partition of the population.

Fortunately it is often possible to decompose a particular population in a biolog-
ically sensible fashion. Vandermeer [24] and Moloney [18] have crafted algorithms
to minimize errors associated with choosing class boundaries. Such algorithms help
to derive more reasonable matrices, but for many populations they cannot altogether
eliminate the sampling and distribution errors associated with discretization. For in-
stance, for many plants size is the natural stage variable, and no decomposition of
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size into discrete stage classes will adequately capture the life history variations. Fur-
thermore, sensitivity and elasticity analyses have both been shown to be affected by
changes in stage class division, Easterling, et al. [9].

Regardless of how well the population is decomposed into stages, there is also the
problem that in a matrix model individuals of a given stage class are treated as though
they are identical through every time step. That is, two individuals starting in the same
class will always have the same probability of transitioning into a different stage class
at every time step in the future, which is not necessarily the case for real populations.

For many populations, these difficulties can be overcome by analyzing a continuum
of stages, which is discussed in the next section.

Integral projection models

An alternate approach to discretizing continuous variables such as size is to use In-
tegral Projection Models. These models retain much of the analytical machinery that
makes the matrix model appealing, while allowing for a continuous range of stages.
Easterling [8] and Easterling et al. [9] show how to construct such an integral projec-
tion model, using continuous stage classes and discrete time, and they provide sensi-
tivity and elasticity formulas analogous to those for matrix models. In Ellner and Rees
[10] an IPM analogue of the Perron-Frobenius Theorem is given. In particular, there
are readily checked conditions under which such a model has an asymptotic growth
rate that is the dominant eigenvalue of an operator whose associated eigenvector is the
asymptotic stable population distribution.

Just as ecologists were slow to adopt matrix models, they have, so far, not used inte-
gral models widely. Stage structured IPMs of the type considered in this paper have ap-
peared in the scientific literature since around ten years ago [5, 6, 8, 9, 10, 11, 21, 22].
There is a large literature on integral models for spatial spread of a population [12, 13].
The structure of the integral operators describing spatial spread can be very different
from those for IPMs. For instance, the integral operators discussed in this paper are
compact, while the operators describing spatial spread might not be compact. Com-
pact operators have many properties that are similar to those of matrices [1, Chapter
17], and these properties make the spectral analysis, and hence the asymptotic analysis,
more analogous to matrix models.

Continuous stage structure and integral operators Let n(x, t) be the population
distribution as a function of the stage x at time t . For example, if ms is the minimum
size, and Ms is the maximum size, as determined by field measurements, then x ∈
[ms, Ms] would be the size of an individual.

The analogue of the matrix entries ki, j for i, j ∈ {0, 1, . . . m} is a projection ker-
nel k(y, x) for y, x ∈ [ms, Ms], and the role of the matrix multiplication operation is
analogous to an integral operator. The kernel is time-independent, which is analogous
to the time-independent matrix entries. The time unit t = 1 represents a time interval
in which data is naturally measured; in the example in this paper the unit of time is a
year. The analogue of (2) is

n(y, t + 1) =
∫ Ms

ms

k(y, x)n(x, t) dx, y ∈ [ms, Ms]. (6)

In particular, the kernel determines how the distribution of stage x individuals at time
t contributes to the distribution of stage y individuals at time t + 1, in much the same
way that in (2) the (i, j)th entry of a projection matrix determines how an individual
in stage j at time t contributes to stage i at time t + 1.
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The kernel is determined by statistically derived functions for life history param-
eters such as survival, growth, and fecundity. At first the construction of an integral
operator model might seem more difficult than the construction of a matrix model.
However, the life history functions are assumed to have a particular distributional
form, often with only a few parameters to be determined for each function. Hence
the total number of parameters to be estimated can be smaller than the number of ma-
trix entries. This of course would not work if the life history functions did not have
an appropriate distributional form. Fortunately, ecologists have a toolbox of functional
forms for different biological parameters. For instance, size is usually described by
a lognormal distribution or truncated normal distribution. TABLE 2 shows all of the
life history functions needed to construct the kernel for a particular integral projection
model for the Platte thistle [22]. An advantage of the integral approach is that data
over the entire distribution can be used to estimate the parameters of the life-history
functions, thus minimizing parameter uncertainty. In contrast, the transitions between
life history stages in matrix models are estimated from subsets of the data.

The stage variable x need not be a scalar, but the range of stage variables should be
a compact metric space. In cases where x is not a scalar, the Riemann integration over
a subset of R will be replaced by more general integration over a product space; see
[10] for such an example.

Integral equations such as (6) can be analyzed in much the same way as matrix-
based models of the form (1). Consider the L1-norm

‖ f ‖ :=
∫ Ms

ms

| f (x)| dx,

which is analogous to (4). The space

L1(ms, Ms) = { f : (ms, Ms) → R | ‖ f ‖ < ∞}
is a complete normed linear space (that is, a Banach space). For every t > 0, the

TABLE 2: Life history functions for the Platte thistle [22],
where variables x and y are in ln(crown diameter)

Demography Equation

Survival s(x) = e−0.62+0.85x

(1 + e−0.62+0.85x)

Flowering Probability f p(x) = e−10.22+4.25x

(1 + e−10.22+4.25x)

g(x, y) = Normal Distribution
Growth Distribution in y with σ 2 = 0.19

and μ(x) = 0.83 + 0.69x

Individual Seed Set S(x) = e0.37+2.02x

J (y) = Normal Distribution
Juvenile Size Distribution with σ 2

f = 0.17
and μ f = 0.75

Germination Probability

Pe = .067 density independent
or

Pe = ST (t)−0.33 density dependent
where ST (t) is the total seed set
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population distribution n(·, t) is in L1(ms, Ms), and the total population is ‖n(t)‖.
Hence L1(ms, Ms) plays the same role in an IPM that R

m (with norm (4)) plays in a
PPM.

For a population distribution n(x, t), it is sometimes useful to distinguish between
the function n(x, t) of two variables and the L1(ms, Ms)-valued function of a single
variable n(t) = n(·, t); we refer to n(t) as a “vector” in L1(ms, Ms). Define the oper-
ator A : L1(ms, Ms) → L1(ms, Ms) by

(Av)(·) :=
∫ Ms

ms

k(·, x)v(x) dx .

It is not hard to show that A is bounded on L1(ms, Ms). In fact, since

∫ Ms

ms

∫ Ms

ms

|k(x, y)|2 dx dy < ∞,

it is well known that A is compact [1, p. 403], which implies that A has nice spectral
properties, in a certain sense [1, Ch. 21]. Then (6) is equivalent to

n(t + 1) = An(t), (7)

which is analogous to (1).
Ellner and Rees [10] show that for a large class of kernels k, the integral operator

A satisfies an analog of the Perron-Frobenius Theorem for matrices. In particular, for
a certain class of operators discussed [10, Appendix C], A has a dominant real eigen-
value λ that is the asymptotic growth rate and an associated unit eigenvector v that is
the stable stage distribution. In this case the eigenvectors are functions in L1(ms, Ms),
rather than vectors in R

m . Additionally

lim
t→∞

‖n(t + 1)‖
‖n(t)‖ = λ and lim

t→∞
n(t)

‖n(t)‖ = v,

where the convergence of the second equation is interpreted as L1(ms, Ms) conver-
gence.

The kernel To construct the kernel, we construct a growth and survival function
p(y, x) and a fecundity function f (y, x), and let

k(y, x) = p(y, x) + f (y, x).

Here p(y, x) is the density of probability that an individual of size x will survive to be
an individual of size y in one time step. Therefore, for each y ∈ [ms, Ms],

∫ Ms

ms

p(y, x) dx ≤ 1.

The function f (y, x) is the distribution for the number of offspring of size y that an
individual of size x will produce in one time step. The fecundity function allows for
the possibility of a seedling or newborn moving, in one time step, to a large size, but
in practice the probability of this happening is virtually zero.
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Estimating the kernel for Platte thistle We now show how a specific model is
constructed, using a modification of the model for Platte thistle (Cirsium canescens)
found in Rose et al. [22]. Platte thistle is an indigenous perennial plant in the midgrass
sand prairies of central North America. The species is in decline in its native environ-
ment, possibly due to a biocontrol agent introduced to manage a different thistle, that
is considered invasive. The time unit in this example is one year. It is strictly mono-
carpic, meaning that plants die after reproducing, so the flowering probability must
be incorporated into the kernel. The Platte thistle lives 2–4 years [17]. In this model,
the continuous class variables x and y are the natural log of the root crown diame-
ter (measured in mm). The maximum and minimum root crown diameter are taken
as ms = ln(.5) and Ms = 3.5, respectively; we found that making Ms larger does not
appreciably change the results. To best illustrate the basic concepts, we simplify the
model by ignoring the effects of herbivores on fecundity and the possible slight effect
of maternal size on offspring size.

We start with some component life-history functions. These are estimated from the
data using standard statistical methods. For instance, logistic regression analysis can be
used to describe survival as a function of size. Below is a description of these functions,
and formulas are given in TABLE 2. All functions are defined for x ∈ [ms, Ms].
• s(x) is the probability that a size x individual survives to the next time step. It is

statistically fit to the logistic curve

s(x) = eax+b

1 + eax+b
,

where b < 0.
• f p(x) is the probability that a size x plant will flower in one time step. This function

is chosen to have the same logistic form as s(x).
• g(y, x) is the density of probability that an individual of size x will have size y at

the next time step. This can describe both the probability of growing to a larger size
and the probability of shrinking to a smaller size. The growth function g(y, x) is a
normal distribution in the variable y.

• S(x) is the number of seeds produced on average per plant of size x . It is assumed
to be an exponential function.

• J (y) is the distribution of offspring sizes. It is assumed to be a normal distribution.
• Pe is the average probability that a seed will germinate. This is also known as the

recruitment probability. We first assume that it is constant, but in a more realistic
model it will be a function of the number of seeds.

Growth and survival kernel: To construct the growth and survival kernel, note that
the probability that a size x individual does not flower is 1 − f p(x). Since the Platte
thistle dies after reproduction, the probability that a size x individual survives to the
next time step is the survival probability s(x) times the probability of not flowering, or
s(x)(1 − f p(x)). Hence the growth and survival kernel is

p(y, x) = s(x)(1 − f p(x))g(y, x).

Fecundity kernel: Each plant will produce seeds, and these seeds must germinate
for an offspring to be included in the next population count. For a Platte thistle to pro-
duce seeds, it must survive through a year and flower. Thus, each plant of root crown
diameter size x will produce s(x) f p(x)S(x) seeds on average, so the total number of
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seeds resulting from a population distribution of n(x, t) at time t is

ST (t) =
∫ Ms

ms

s(x) f p(x)S(x)n(x, t)dx (8)

and the total number of germinated seeds at time t is Pe ST (t). Finally, we also need to
distribute the offspring into the various sizes by J (y). The distribution of offspring at
time t + 1 resulting from a population distribution of n(x, t) at time t is

Pe J (y)ST (t) = Pe J (y)

∫ Ms

ms

s(x) f p(x)S(x)n(x, t) dx .

Therefore the fecundity kernel is

f (y, x) = Pe J (y)s(x) f p(x)S(x). (9)

FIGURE 1 shows a graph of the total kernel

k(y, x) = p(y, x) + f (y, x) = s(x)(1 − f p(x))g(y, x) + Pe J (y)s(x) f p(x)S(x).
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Figure 1 The kernel for the Platte thistle integral projection model

Numerical solution of the integrodifference equation Analytic evaluation of the
integral operator is difficult if not impossible to perform. Thus, we use numerical in-
tegration to obtain an estimate of the population. A conceptually easy and reasonably
accurate method is the midpoint rule. Let N be the number of equally sized intervals,
and let {x j } be the midpoints of the intervals. Then

(An)(y, t) =
∫ Ms

ms

k(y, x)n(x, t) dx ≈ Ms − ms

N

N∑
j=1

k(y, x j )n(x j , t). (10)
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Let

ki j = Ms − ms

N
k(xi , x j ) for i, j = 1, 2, . . . N , AN = (ki j)

and

nN (t) = [n(x1, t), n(x2, t), . . . n(xN , t)]T .

Then nN (t) is a discrete approximation of n(x, t), AN is a discrete approximation of
the integral operator A, and

AN nN = Ms − ms

N

N∑
j=1

k(xi , x j )n(x j , t).

Since k(x, y) is continuous, the Riemann sum uniformly approximates the integral as
N → ∞. Hence the integrodifference equation n(t + 1) = An(t) can be approximated
at the midpoints x j by nN (t + 1) = AN nN (t).

This matrix model can be analyzed much like a traditional matrix model. Since
the dominant eigenvalue λN of AN converges to the dominant eigenvalue λ of A as
N → ∞ [10, 8], the long term growth rate is easily estimated. FIGURE 2 shows this
convergence of λN to λ = 1.325 as N increases. The leading eigenvalue of A5 is 1.332,
so we see that fairly small dimensional approximations of A lead to very good approx-
imations of the long-term growth of the system.
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Figure 2 The leading eigenvector of the numerical approximation of the integral projec-
tion model as a function of number of subintervals in the Riemann sum

We should emphasize the difference between a PPM and the matrix model obtained
from an IPM. In the former every nonzero entry is estimated directly; a large matrix
of this type is not intended to approximate an IPM, and is subject to the discretization
problems we described above. In the latter, the life history functions are estimated,
giving rise to a kernel, and this kernel is used to obtain a matrix that approximates the
integral operator for large N . As indicated above, an IPM is often preferable to a PPM,
and in these cases the matrix model based on the IPM is also preferable to a PPM.
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We now turn to the stable size distribution, that is, the limiting distribution given by
the second equation in (5). This can be found by approximating the leading eigenvector
of A, and normalizing it so that it has L1(ms, Ms) norm of 1. This eigenvector is the
curve labeled “Density Independent” in FIGURE 3. Note that the x-axis is in mm rather
than ln(mm). The curve is obtained by computing the unit leading eigenvector of AN

for large N , and noting that this is a good approximation of the unit leading eigenvector
[10].
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Density dependence In the Platte thistle model above, we made the simplifying as-
sumption that the germination probability, Pe, is constant, and obtained a density inde-
pendent model. By “density independence” we mean that n(t + 1) is a linear function
of n(t), or equivalently, that the operator A does not depend upon n(t). Using the
average germination probability, the growth rate of 1.325 we obtain from this model
does not match the observed data. In particular, the data in Rose et al. [22] does not
indicate that there is a constant growth rate, but rather shows a leveling off of the
population over time. Furthermore, ecologists consider density dependent recruitment
more realistic, since as the total number of seeds increases, the chance that each indi-
vidual seed will germinate declines. Therefore, the germination probability is taken to
be a nonlinear function of ST (t), the total number of seeds produced at time t , instead
of a constant. Since the number of seeds produced depends on n(x, t), the resulting
system will be density dependent. In [22] the germination probability is modeled by
Pe(t) = (ST (t))−.33. The resulting nonlinear system is

n(y, t + 1) =
∫ Ms

ms

p(y, x)n(x, t) dx + J (y)(ST (t))−.33

∫ Ms

ms

s(x) f p(x)S(x)n(x, t) dx

=
∫ Ms

ms

p(y, x)n(x, t) dx + J (y)(ST (t)).67.
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The solutions to the resulting nonlinear system matches the data better than the solu-
tions to the linear system.

This nonlinearity substantially changes the qualitative and quantitative nature of the
model. For instance, as discussed above, in the linear model an asymptotic growth rate
is determined by the leading eigenvalue and a stable age structure is determined by the
eigenvector associated with the leading eigenvalue. We prove in another paper that for
this nonlinear model the solutions n(·, t) converge in L1(ms, Ms) as t → ∞, and that
this limit is independent of the initial population vector (provided that the initial pop-
ulation vector is nonzero) [20]. We denote the limit by w(·), and the normalized limit
v(·) = w(·)/‖w(·)‖. This latter vector is the stable age distribution for this system, and
is shown by FIGURE 3 (the “Density Dependent” curve). It follows from the Domi-
nated Convergence Theorem that the total population N (t) = ‖n(·, t)‖ converges to
‖w‖ as t → ∞, and that the limiting total population is independent of the initial pop-
ulation vector. This is illustrated in FIGURE 4, where the total population as a function
of time is shown for five different initial conditions.
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tion models. We illustrate integral projection modeling by a Platte thistle population, showing how the model is
determined by basic life history functions.
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Is This Graph Planar?

In their June article [1] Danielle Arett and Suzanne Dorée challenged readers to
draw the graph H 2

4 in a plane without crossings. The graph—which describes the
Tower-of-Hanoi puzzle with four pegs and two disks—is shown below.

Is it really possible? For a solution, keep turning pages.
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On the evening of November 8, 1988, I (AG) was working with my colleague Gary
King in his Harvard office. It was election night, and Massachusetts Governor Michael
Dukakis was a candidate for President against Vice President George H. W. Bush.
Gary somehow had gotten his hands on a pair of tickets to Dukakis’s victory party in
Boston, and we were trying to decide whether to go. Dukakis was expected to lose,
but—who could say, right? We had the TV on, and the first state to report, at 7 PM, was
Kentucky, which Bush won by over 10 points. Gary informed me that the election was
over: Kentucky, at the time, was near the political center of America, and there was
no way that Dukakis would do much better nationally than he did in Kentucky. So we
saved ourselves a subway ride and kept on working.

What about the most recent election night—November 4, 2008, when the candidates
were Senators Barack Obama and John McCain? Was it possible for a viewer to play
along at home with the election and decide at 7 PM, or 8 PM, or 9 PM what the outcome
would be? On the night before the election we (AG and NS) analyzed a probabilistic
election forecast to make some guesses at what might be known at different times
during the evening. This article is a report of that analysis. Most of the results presented
were obtained on November 3, the night before the election, and were intended as a
guide for interpreting what we would hear the next night, as the votes were counted.

We performed one set of calculations using statewide vote margins; that is, reports
like we remembered from Kentucky in 1988; and another set of calculations using only
the tally of states won or lost, without the margins of victory.

In the next sections we describe the model we used, and then present our re-
sults from November 3. We then discuss what actually happened and ways in which
election-night reporting could be improved in the future.

Our model on the night before the election

If one wants to make probabilistic forecasts, one needs a model. We used the model de-
veloped by one of us (NS) to make election forecasts at the website fivethirtyeight.com.
It is described at that site [6] but it is too rich a model for us to describe in detail here.
We will describe it in general terms, and discuss the tools one might use to develop a
similar model of one’s own.

A joint probability distribution The model takes the form of a joint probability
distribution on 51 variables, one corresponding to a state’s popular vote result. (We
are treating the District of Columbia as a state, since it has electoral votes.) For each
j = 1, . . . , 51, let Z j represent the margin of victory, expressed as a percentage of
the two-party popular vote, in the j-th state. We take the margin as positive if Obama

Math. Mag. 83 (2010) 258–266. doi:10.4169/002557010X521787. c© Mathematical Association of America
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wins and negative if McCain wins (an arbitrary choice) and, for convenience, we ex-
press the value of Z j in percentage points. For example, if McCain wins Kentucky
(the eighteenth of the 51 states on our list) by a margin of 58.2% to 41.8% (counting
only these two candidates’ votes) then we say that Z18 = −16.4. The outcome of the
election is summarized by the vector of random variables Z = {Z1, . . . , Z51}. If we
know the values of these variables, then we know the number of electoral votes for
each candidate, as well as (with reasonable assumptions about voter turnout in each
state) the national popular vote margin.

In the next section we will describe how one might build a probabilistic model of
this form, combining the best available mean forecasts of the variables with a realistic
error model. In this section we describe how we used the model we had.

We used the model as the basis for a simulation. In the language of statistics, this
is called a Monte Carlo method. We drew random vectors zi = {zi,1, . . . , zi,51} for
i = 1, . . . , 10000, independently from the joint distribution defined by the model. By
“independently” we mean that the 10,000 vectors were independent of each other—
not that the variables were independent, since their correlations were dictated by the
model. These 10,000 independent simulations amounted to a discrete approximation
to the essentially continuous distribution of election outcomes.

All of the results in this paper were derived from this 10000 × 51 matrix of num-
bers. Each row represents a possible result of the election. In effect, we act as if these
are the only possible results, and that each row of the matrix is equally likely to oc-
cur. The full matrix represents the state of our knowledge just before the polls close.
(Elsewhere we have analyzed a similar set of simulations to estimate the probability
that a single vote in any given state would be decisive in determining the outcome of
the election [4]).

For our calculations below, we will need to not merely average over our 10,000
simulations but also to use them for conditioning—that is, making probabilistic infer-
ences about future events given information that has already occurred, or has been
assumed to occur. We implement the conditional probability formula P(A | B) =
P(A ∩ B)/P(B) in a numerical computation fashion by keeping only the simulations
consistent with the conditioned event.

For instance, suppose we were to learn at 7 PM that McCain has won Kentucky by
14 percentage points; in that case, what can we say about the outcome in the remain-
ing states? What we can do is restrict our inferences to those simulations in which
z18 = −14%. Because of the discreteness of the simulations, we have to allow some
slack in the computations; instead of conditioning on the precise event z18 = −14.0%,
we would keep all simulations in which z18 is between −15.0% and −13.0%. The
smoothness of the underlying distribution ensures that our results computed in this
way are virtually identical to those that would be obtained by exact calculations on the
continuous space.

How can one build a model to forecast the election?

There are several different ways that one could construct a probabilistic election fore-
cast (see Campbell [1] and Erikson and Wlezien [2] for recent reviews). Three natural
approaches are: (1) aggregation of pre-election polls, (2) forecasts based on what are
sometimes called “the fundamentals” (forecasting the national vote based on the state
of the economy and making state-level adjustments based on long-term trends in vot-
ing patterns), and (3) judgments of political experts.

The model we used is based on a combination of these sources of information,
but primarily the recent pre-election polls. When considering forecasts made months
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before Election Day, there is a distinct difference between the snapshots obtained by
poll aggregation and the predictions obtained by historical forecasting models. In dis-
cussing a particular method for incorporating public opinion surveys into forecasting
models, Lock and Gelman [5] find that early polls provide some information about the
relative positions of the states in the final voting but, when it comes to the national
vote, they reveal essentially nothing beyond forecasts based on the fundamentals. The
day before the election, the balance between polls and external forecasts is slightly
different, because the polls tend to converge to the true election outcome (Gelman
and King [3]; see also FIGURE 3 below). This is why we can pretty much make our
election-day forecast based on aggregated polls, with slight adjustments based on a
regression model and simulations capturing state-level and national uncertainty. The
third part of the forecasting process—judgments of political experts—comes in the
form of adjustments to the raw survey numbers.

Suppose you wanted to create your own forecasts of a national election, which can
be studied in aggregate (using national polls) or separately (with state polls). How
would you do it? To start, you might want to put together these sources of information:

• National polls. Average them how you like, fit a trend line if you want, but in any
case use these to predict the aggregate vote.

• A national-level forecast. It makes sense to pull your poll aggregate toward whatever
external forecasts you have (for example, based on the historical relation between the
economy and election outcomes).

• Historical patterns of state voting relative to the national average. If nothing else, you
can take your national forecast and perturb it, adding and subtracting percentages for
each state to get an estimated state-by-state vote assuming a uniform national swing
from past elections.

• State polls. You can use these to adjust state-level estimates. There are different ways
to actually combine all these numbers, but the key is to separate the national forecast
from the relative positions of the states.

Now you have a point estimate—which becomes an estimate of the mean of the
vector {Z1, . . . , Z51}. The next step is to add variation to capture uncertainty in the
forecast. It is natural for this variation to take the form of a covariance matrix for these
51 variables. You want for the correlation matrix to reflect uncertainty at the national,
regional, and state levels.

Our particular simulations are based on a poll aggregation method developed for
the website fivethirtyeight.com and involving several layers of adjustments (Silver [6]).
What is relevant for the present article is that our 10,000 simulations represent forecast
uncertainty about the election, as expressed in a joint distribution of the candidates’
vote shares in the fifty states.

The vote shares in these distributions are correlated—for example, if Barack Obama
had outperformed the average forecast in Ohio, we would expect (with some level of
uncertainty) that he would’ve outperformed the forecast in Oklahoma, Oregon, or any
other state. This is a sensible property for a set of forecasts, and it implies that our
inferences for the outcome of the election in any state is affected by our knowledge of
what happened in any other states where the polls closed earlier.

As we demonstrate below, we can use the 10000 × 51 matrix of state-level forecasts
to make conditional inferences, to step through the hours of election night making our
best prediction for the future based on the data available at any given time. Whatever
the form of the probability distribution you select, the computations can be performed
most transparently and generally by operating directly on the simulations.
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The prior distribution Let’s start by asking what we could say, based on this model,
before any election returns were in. In Bayesian statistics this is called the prior dis-
tribution, and we can describe it by averaging all 10,000 simulations. By this method
Obama was expected to win the national popular vote by 4.8 percentage points, with
an expected electoral vote total of 340 (compared to 270 needed for victory), and a
96% chance of winning the electoral vote (with a 0.2% chance of a tie in the elec-
toral college). The top row of FIGURE 1 shows the forecast distributions of Obama’s
popular and electoral vote shares.

Obama's popular vote margin
–5% 0% 5% 10% 15%

Popular vote forecast,
before any votes are counted

Obama's electoral votes
200 300 400

Electoral vote forecast,
before any votes are counted

Obama's popular vote margin
–5% 0% 5% 10% 15%

Popular vote, conditional on
early states going as expected

Obama's electoral votes
200 300 400

Electoral vote, conditional on
early states going as expected

Figure 1 Uncertainty distribution for the presidential election outcome, expressed as
Obama’s popular vote margin and his electoral vote total. Top row is based on a poll-
based forecast the day before the election; bottom row is based on these forecasts, con-
ditional on the states whose polls close at 7 PM going as expected. The averages of the
distributions in the top and bottom row are the same, but the distributions on the bottom
show less variation: the vote margins of the early states tell us a lot.

Our model on election night

In 2008 the polls closed at 7 PM Eastern Time in six states, which we list in decreasing
order of Obama’s predicted vote margin: Vermont (Obama predicted to win by 21%),
Virginia (+5%), Indiana (−2%), Georgia (−5%), South Carolina (−11%), and Ken-
tucky (−15%). (The map has certainly changed since the days when Kentucky was a
swing state!)

Real-time predictions given vote margins in the early states We start by assum-
ing that the viewer would know the vote margin (either as exactly tabulated or as
estimated from exit polls) in each of these states, which can be summarized by a sim-
ple unweighted average of Virginia, Indiana, Georgia, South Carolina, and Kentucky.
(We excluded Vermont because it is the smallest of these six states and farthest from
the national median.) Based on the last pre-election poll aggregates, the estimated five-
state average vote margin was −5.7%; that is, McCain was expected to beat Obama by
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an average of 5.7 percentage points on the way to winning Kentucky, South Carolina,
Georgia, Indiana, and losing Virginia.

If the expected happens, what have we learned? That is, what if the vote margin in
Virginia, Indiana, Georgia, South Carolina, and Kentucky were to equal the expected
−5.7%? We pipe this assumption through our model by calculating, for each of our
10,000 simulations, the average vote margin in these five states, and then restricting
our analysis to the subset of simulations for which this vote margin is within 1 per-
centage point of its expected value (that is, between −6.7% and −4.7%). Out of our
10,000 simulations, 2800 fall in this range; that is, we predict there is a 28% chance
that McCain’s average vote margin in these five states will be between 4.7% and 6.7%.
What is of more interest is what happens if this occurs. Considering this subset of
simulations, Obama’s expected national popular vote margin is +4.7%, his expected
electoral vote total is 343, almost the same as the prior distribution. But now the con-
ditional probability of an Obama victory is 100%: he wins the electoral college in all
2800 simulations in this condition. The bottom row of FIGURE 1 shows the forecast
distributions of Obama’s popular and electoral vote shares, conditional on him doing
exactly as expected in the first round of states.

So if the 7 PM states were to go as expected, we would know a lot.
How about other possibilities? We repeat the above calculation under scenarios in

which Obama’s average vote margin in Virginia, Indiana, Georgia, South Carolina, and
Kentucky takes on each possible value between −12% and +1%; based on our simu-
lations, there is a 97% chance that the average 7 PM vote margin (excluding Vermont)
will fall in this range.

In the unlikely event that McCain were to get an average vote margin of 12 percent-
age points in the five 7 PM states, we would have forecast a 1.3% margin for McCain
in the national popular vote, an expected 265 electoral votes for McCain, and a 38%
chance of him winning the electoral college (with a 60% chance of Obama winning
and a 2% chance of a tie).

At the other extreme, if Obama happened to get an average vote margin of 1 per-
centage point in these early states, we would have predicted his national popular vote
margin to be 10% with 394 electoral votes and a 100% chance of winning.

What about the possibilities in between? FIGURE 2 shows Obama’s expected pop-
ular vote margin, the expected division of electoral votes, and the probability of each
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Figure 2 Election predictions at 7 PM Eastern time, after the polls were to close in Vir-
ginia, Indiana, Georgia, South Carolina, and Kentucky. Obama’s average vote margin in
these five states was predicted to be −5.7 percentage points, but it could plausibly have
fallen between −12 and +1 percentage point. For each of these possible outcomes, we
computed Obama’s expected share of the national popular vote, his expected electoral
vote total, and the probability he would win in the electoral college. Unless McCain’s
average vote margin in these five states was at least 9 percentage points, we could confi-
dently call the election for Obama at this point.
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candidate winning under the different scenarios. According to these simulations, if Mc-
Cain hadn’t secured an average vote margin of at least 9 percentage points in Virginia,
Indiana, Georgia, South Carolina, and Kentucky, he could pretty much have thrown in
the towel. And if Obama had lost these states by an average of more than 10 points,
we might have been up all night worrying (rather than celebrating or crying).

Real-time predictions given only the state winners What if the TV stations do
not give vote margins but just report winners? With six states reporting at 7 PM, there
are 64 possible outcomes. Some of these are impossible or uninteresting, however:
if McCain had won Vermont, or if Obama had won South Carolina or Kentucky, the
election would have been over. What remains are Virginia, Indiana, and Georgia.

TABLE 1 gives the eight possibilities, our forecast probability of each happening,
and Obama’s expected popular vote margin, electoral vote margin, and win probability
under each scenario. The only interesting possibility is if McCain had swept all three
states: then it would have been a contest, and he would have had an even chance of
pulling it out.

TABLE 1: Scenarios of interest at 7 PM Eastern time, with the first states reporting. In order
to have a chance, McCain needed to win Virginia in this first round (in which case he
would almost certainly have won Indiana and Georgia as well).

Prob. of Pop.vote Electoral vote Probability of. . .
VA IN GA scenario margin Oba McC O.win M.win Tie

McC McC McC 7% +0.2% 268 270 .47 .49 .04
McC McC Oba 0
McC Oba McC 0
McC Oba Oba 0
Oba McC McC 66% +4.0% 330 208 .99 .01 .00
Oba McC Oba <1%
Oba Oba McC 22% +7.4% 375 162 1.00 .00 .00
Oba Oba Oba 5% +9.9% 399 139 1.00 .00 .00

We would then have had to wait until 7:30 PM Eastern time, when we would hear
from Ohio, North Carolina, and West Virginia. Our pre-election forecasts gave Obama
less than a 1% lead in North Carolina and a 2% lead in Ohio, with McCain having a
10% lead in West Virginia. But in the (unlikely) event of McCain sweeping Virginia,
Indiana, and Georgia, the story would change. At that point, Obama would be expected
to lose Ohio, North Carolina, and West Virginia, by margins of 3, 5, and 15 percentage
points, respectively. If McCain’s chances were still alive at 7 PM, there was an 87%
chance he’d win all three of these must-win states that close the polls at 7:30.

Onward to 8:00, when most of the remaining eastern states closed the polls. The
8 PM states range from Maryland and Massachusetts (where Obama was forecast to
win by 23 and 19 points, respectively) to Oklahoma and Alabama (predicted McCain
victory margins of 27 and 24 points). Conditional on McCain winning the key early
states of Virginia, Indiana, Ohio, and North Carolina, these predictions shift by about
5 percentage points in his favor.

The states to watch at 8 PM—if there was anything worth watching at all—would
be New Hampshire, Pennsylvania, and Florida, for which McCain’s predicted vote
margins, conditional on his previous success, would be −3%, −2%, and +4%. At
this point, winning Pennsylvania would pretty much guarantee victory for McCain;
his other possibilities are winning New Hampshire and Florida (which would give
him an expected 277 electoral votes and a 79% chance of winning, with an amazing
12% chance of a tied electoral college), and winning Florida alone (the most likely
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possibility, with an 8% chance of happening) which would take him to an expected
264 electoral votes and a 33% chance of winning.

At this point, McCain would have an 80% chance of winning both Missouri and
Florida, which would move him up to an expected 281 electoral votes and a 66%
chance of winning (compared to 30% for Obama and a 4% chance of a tie, at this
point). The next most likely possibility is McCain winning Missouri but losing Florida,
in which case his expected electoral vote count drops to 243 and his probability of
winning declines to 3%.

If McCain were to win Virginia, Indiana, Ohio, North Carolina, and Florida, while
losing Pennslyvania, we would have to keep the TV on. The news at 8:30 wouldn’t
help much: at this point, McCain would be expected to win handily in Arkansas, the
only state to close the polls at that time. At 9 PM we would hear from a bunch of
states further west, including Colorado (with Obama expected to win by less than 1%
at this point), New Mexico (Obama expected to win by 4%), Minnesota (Obama by
4%), Wisconsin (Obama by 5%), and Michigan (Obama by 6%). If Obama won all
five of these, he would have a 97% chance of winning. If McCain won any of them
(most likely Colorado), he would have been almost home free, with a 90% chance of
an electoral vote win, and if McCain had won two or more, he would have basically
won the election.

Again, though, based on the polls the day before the election, we only estimated a
4% chance overall of this happening. The most likely outcome a priori was that the
election would be over by 7 PM.

Discussion

With the ubiquity of polling and the rise of internet communication, state-level elec-
tion forecasts and public opinion estimates are increasingly available to the general
public. Attention has generally focused on point predictions and the odds of each can-
didate winning; here we demonstrate how the correlations in a forecast implicitly al-
low inferences for the election outcome, conditional on partial information. This is
straightforward probability theory, or Bayesian inference; here we are applying stan-
dard practice and summarizing inferences using simulations. With 10,000 simulations,
we can compute all the relevant conditional probabilities directly. If we wanted to
work out some obscure possibilities (for example, Obama winning Virginia and Geor-
gia with McCain winning Indiana), we would need to produce more simulations or
else use some analytical approximations, but here we pursued only the more plausible
scenarios.

Beyond whatever interest there may be in election-night dynamics, this work is rel-
evant to understanding election forecasts and, more generally, inference about vector
outcomes in which there is correlation (so that, for example, the outcome in Virginia
is informative, not just about that state, but about national and regional swings). As we
have demonstrated, simulation-based calculation allows us to condition on virtually
any plausible outcome.

On a practical level, we are only interested here in moderate or large probabilities—
we are not trying to pick out 1-in-1000 longshots—and so we only need to condition on
events that have a nontrivial forecast probability of occurring. For example, we could
safely ignore Vermont in the first set of results, and look only at the aggregate margin
in the other five states—and then we only needed to look at one-percent intervals even
though (according to the story) we would be observing exact values. These choices are
not lazy but rather reflect a realistic understanding of the problem we are studying. If
there is any worry on this point, one could always repeat the analysis with 10 or 100
times as many simulations and increase the precision.
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What actually happened?

Obama won Vermont and Virginia, and McCain won Georgia, South Carolina, and
Kentucky as predicted. As a small surprise, Obama won Indiana. The actual margins
for Obama in these six states were Vermont +37.8%, Virginia +6.4%, Indiana +1.0%,
Georgia −5.3%, South Carolina −9.1%, Kentucky −16.5%. The average for the last
five states was −4.7%. Had we known that average, or just the fact that Obama won
Virginia, we could have been nearly certain that Obama would win the election.

Of course, all of our inferences are only as good as the forecasting model. Unsur-
prisingly, given that the forecasts were based on the latest polls, they did pretty well;
see FIGURE 3. And, in a sense, the election really was over by 7 PM—although it was
not so easy to learn this from watching the networks’ broadcasts.
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Figure 3 Obama’s share of the two-party vote in each state, plotted vs. poll-based pre-
dictions made the day before. The poll-based model gave accurate forecasts of the na-
tional vote and also most individual states, although with a systematic pattern of under-
predicting Obama’s vote share where he was expected to do well, and overpredicting in
most of the states where he was expected to lose.

Our conditional probability calculations worked reasonably well too—in theory. In
practice, though, our advice on what to look for on election night was useless, because
the TV networks did not report total vote margins and they did not immediately declare
winners. Instead, they reported partial results as they came in from each state (14% of
the precincts in Virginia, 12% of the precincts in Indiana, and so forth). As the tallies
mounted it became clearer who would win each state, but the broadcasters missed
out on the opportunity to provide additional information in the form of conditional
probabilities.

In particular, what if the newscasters, after reporting the election results based on
14% of the precincts reporting in Virginia, were to also tell us the results in the previ-
ous election in those same precincts? The viewers would then know the swing in vote
proportions, which would be much more informative than the raw numbers. (When
watching the election returns on TV, we heard occasional comparisons with the 2004
Kerry-Bush numbers, but only sporadically.) Our suggestion would give the informa-
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tion needed to make inferences about the national election without the speculation
involved in calling states early based on exit poll results.

For future elections it would be fun to set up an online widget so that users could
enter election returns as they are happening, and the relevant probabilities would pop
out. It would also be desirable to connect this to election returns by county and even
precinct. TV networks aren’t supposed to make early calls of the election but maybe
there’s be some way of doing this informally.
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The solution of the system of differential equations

y′ = Ay, y(0) = y0, (1)

in which A is an n × n complex matrix while y(t) and y0 are n-vectors, is

y(t) = eAt y0.

There are many ways to compute the matrix exponential eAt , at least on a theoretical
level, using various amounts of linear algebra [7, 8]. One traditional method [4] uses
the transformation of A into its Jordan Canonical Form. Other methods due to Putzer
[2, 5, 9, 10], Kirchner [6], and Fulmer [3] compute eAt using only the eigenvalues
of A and their algebraic multiplicities. Putzer’s paper [9] actually has two somewhat
different algorithms. The purpose of this note is to adapt one of Putzer’s arguments to
give a very simple proof of a formula for the resolvent matrix (s I − A)−1, which we
can then combine with the Laplace transform formula

eAt = L−1
{
(s I − A)−1

}
(2)

to get a formula like that of Putzer for eAt .

EXAMPLE 1. To illustrate the type of formula that will be obtained, let A be any
3 × 3 matrix with characteristic polynomial cA(s) = (s − 1)2(s − 2)—that is, whose
eigenvalues are 1, 1, 2. In this case Putzer’s method gives this closed formula for eAt :

eAt = et I + tet(A − I ) + (e2t − et − tet)(A − I )2. (3)

We obtain this result by first obtaining a formula for (s I − A)−1 as a function of s:

(s I − A)−1 = 1

s − 1
I + 1

(s − 1)2
(A − I ) + 1

(s − 1)2(s − 2)
(A − I )2. (4)

Equation (3) follows by applying the inverse Laplace transform to (4):

eAt = L−1
{
(s I − A)−1

}

= L−1

{
1

s − 1

}
I + L−1

{
1

(s − 1)2

}
(A − I ) + L−1

{
1

(s − 1)2(s − 2)

}
(A − I )2

= et I + tet(A − I ) + (e2t − et − tet)(A − I )2.

Math. Mag. 83 (2010) 267–275. doi:10.4169/002557010X521796. c© Mathematical Association of America
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Since the coefficients of (4) are rational functions, the inverse Laplace transforms are
easily computed from the standard formula L−1

{
1/(s − λ)k

} = t k−1eλt/(k − 1)! com-
bined with a partial fraction expansion when needed.

The method of Putzer that is being adapted uses knowledge of the eigenvalues λ1,
. . . , λn of the n × n matrix A, counted according to their algebraic multiplicities, to
reduce the system (1) to a recursive system of first order linear differential equations
of the form

r ′
1 = λ1r1 r1(0) = 1,

r ′
j = λ j r j + r j−1 r j (0) = 0, for j ≥ 2.

(5)

The solutions r j (t) then become coefficient functions that are used to write

eAt =
n−1∑
j=0

r j+1(t)Pj , (6)

in which the matrices Pj are easily determined from A and the eigenvalues as

{
P0 = I if j = 0,

Pj = (A − λ j I ) · · · (A − λ1 I ) if j ≥ 1.
(7)

Our approach to computing eAt makes use of the Laplace transform and replaces
the recursive differential equations (5) with the inverse Laplace transform

r j (t) = L−1

{
1

(s − λ j ) · · · (s − λ1)

}
. (8)

In the example above, the expression for eAt in (3) is the same as that given by (6), with
the r j (t) being determined by (8), that is as the inverse Laplace transforms of the coeffi-
cient functions in (4), rather than by solving the system of differential equations (5).
The only Laplace transform properties that we will need are L

{
t keλt

} = k!/(s − λ)k+1

and the derivative formula L {y′(t)} = sL {y(t)} − y(0).
The theoretical justification of the method we describe, like that of Putzer, relies

on the Cayley-Hamilton theorem. That theorem can itself be proved by means of the
Laplace transform [1]. A simplified version of the proof in [1] is given at the end of
this note.

Our starting point is Equation (2), which we now verify. Let A be an arbitrary n × n
complex matrix. It follows from the power series description of eAt that (eAt)′ = AeAt

and eAt |t=0 = I , the n × n identity matrix. The derivative formula for L gives

sL
{
eAt

} − I = L
{
(eAt)′} = L

{
AeAt

} = AL
{
eAt

}
.

Solving for L
{
eAt

}
gives L

{
eAt

} = (s I − A)−1, which is equivalent to (2).
Let λ1, . . . , λn be the eigenvalues of A listed in any desired order, each counted

according to its algebraic multiplicity. Define a sequence of rational functions R j (s)
and matrices Pj for 0 ≤ j ≤ n by

{
R0(s) = 1 if j = 0,

R j (s) = (s − λ j )
−1 · · · (s − λ1)

−1 if j ≥ 1,
(9)
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and {
P0 = I if j = 0,

Pj = (A − λ j I ) · · · (A − λ1 I ) if j ≥ 1.
(10)

With these notations, there is the following formula for (s I − A)−1.

THEOREM 1. With R j (s) and Pj as defined in (9) and (10),

(s I − A)−1 =
n−1∑
j=0

R j+1(s)Pj . (11)

Proof. Let B(s) denote the right-hand side of Equation (11). It is necessary to
show that (s I − A)B(s) = I . To this end, note that the functions R j (s) are related
by (s − λ j )R j (s) = R j−1(s) for 1 ≤ j ≤ n, and the matrices Pj are related by (A −
λ j+1 I )Pj = Pj+1 for 0 ≤ j ≤ n − 1. Then

(s I − A)R j+1(s)Pj = (
(s I − λ j+1 I ) − (A − λ j+1 I )

)
R j+1(s)Pj

= (s − λ j+1)R j+1(s)Pj − R j+1(s)(A − λ j+1 I )Pj

= R j (s)Pj − R j+1(s)Pj+1,

so that

(s I − A)B(s) =
n−1∑
j=0

(s I − A)R j+1(s)Pj

=
n−1∑
j=0

(
R j (s)Pj − R j+1(s)Pj+1

)

= R0(s)P0 − Rn(s)Pn

= I − Rn(s)Pn.

But

Pn = (A − λn I ) · · · (A − λ1 I ) = cA(A),

in which

cA(s) = det(s I − A)

is the characteristic polynomial of A. By the Cayley-Hamilton Theorem, cA(A) = 0,
so we conclude that (s I − A)B(s) = I , as required.

EXAMPLE 2. Equation (11) produces the standard adjoint formula for (s I − A)−1

if A = [
a b
c d

]
is a 2 × 2 matrix. To see this, recall that the characteristic polynomial of

A is

cA(s) = det(s I − A) = s2 − (a + d)s + (ad − bc) = (s − λ1)(s − λ2)

so that λ1 + λ2 = a + d. Then the formula in Equation (11) becomes

(s I − A)−1 = R1(s)P0 + R2(s)P1

= (s − λ1)
−1 I + (s − λ2)

−1(s − λ1)
−1(A − λ1 I )
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= (s − λ2)
−1(s − λ1)

−1 ((s − λ2)I + (A − λ1 I ))

= (cA(s))−1 (A + (s − λ1 − λ2)I )

= 1

cA(s)

[
s − d b

c s − a

]
.

EXAMPLE 3. If A is a 3 × 3 matrix with eigenvalues λ1 = λ2 = λ3 = λ, then
Equation (11) becomes

(s I − A)−1 = 1

s − λ
I + 1

(s − λ)2
(A − λI ) + 1

(s − λ)3
(A − λI )2.

Combining Equation (2) and Theorem 1 gives the Laplace transform version of
Putzer’s formula for eAt .

THEOREM 2. Let A be an n × n matrix with eigenvalues λ1, λ2, . . . , λn. Then

eAt =
n−1∑
j=0

r j+1(t)Pj , (12)

in which {
P0 = I if j = 0,

Pj = (A − λ j I ) · · · (A − λ1 I ) if j ≥ 1,
(13)

and

r j (t) = L−1
{

R j (s)
} = L−1

{
(s − λ j )

−1 · · · (s − λ1)
−1

}
(14)

for 1 ≤ j ≤ n.

In Putzer’s original formulation, the functions r j (t) (1 ≤ j ≤ n) are determined
recursively as solutions of the system

r ′
1 = λ1r1 r1(0) = 1

r ′
j = λ j r j + r j−1 r j (0) = 0, for j = 2, . . . , n.

(15)

To see that this is equivalent to r j (t) = L−1
{

R j (s)
}

it is only necessary to observe,
using the derivative formula for Laplace transforms, that the solution r1(t) of (15)
satisfies L

{
r ′

1(t)
} = sL {r1(t)} − 1 = λ1L {r1(t)} so that L {r1(t)} = (s − λ1)

−1 =
R1(s). Apply the Laplace transform to the second equation in (15) and apply induction
to conclude that

L
{
r j (t)

} = (s − λ j )
−1L

{
r j−1(t)

} = (s − λ j )
−1 · · · (s − λ1)

−1 = R j (s).

In Putzer’s formulation the computation of the r j (t) is truly recursive since r j (t)
is determined by means of the first order linear differential equation (15) involv-
ing r j−1(t). In our version, r j (t) = L−1

{
R j (s)

}
, and while it is true that R j (s) =

(s − λ j )
−1 R j−1(s), the partial fraction method of computing r j (t) is not facilitated by

knowledge of the partial fraction expansion for R j−1(s). However, the recursive nature
is still present when one takes into account the relationship between the convolution
product of two functions and the product of their Laplace transforms. Recall that if
L { f (t)} = F(s) and L {g(t)} = G(s), then

L−1 {F(s)G(s)} (t) = ( f ∗ g)(t) =
∫ t

0
f (x)g(t − x) dx .
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The integral defines the convolution product of the functions f (t) and g(t). Since
R j (s) = (s − λ j )

−1 R j−1(s) and L−1
{
(s − λ)−1

} = eλt it follows that r j (t) = r j−1(t) ∗
eλ j t ; that is, r j (t) is the convolution product of r j−1(t) and eλ j t .

EXAMPLE 4. If A is a 3 × 3 matrix with eigenvalues λ1 = λ2 = λ3 = λ, then
Equations (14) become

r1(t) = L−1
{
(s − λ)−1

} = eλt ,

r2(t) = L−1
{
(s − λ)−2

} = teλt ,

r3(t) = L−1
{
(s − λ)−3

} = (t2/2)eλt .

Thus

eAt = eλt I + teλt(A − λI ) + t2

2
eλt(A − λI )2.

As long as one can find the eigenvalues and their multiplicities, Theorem 2 involves
only matrix multiplications and the partial fraction expansions that are needed to com-
pute r j (t). Here is a somewhat larger example.

EXAMPLE 5. Use Theorem 2 to find eAt if

A =
⎡
⎢⎣

1 0 1 0
0 1 0 1
0 0 2 1
0 0 0 2

⎤
⎥⎦ .

Since A is upper triangular, the eigenvalues are λ1 = λ2 = 1 and λ3 = λ4 = 2. This
gives the following for the matrices Pj . P0 = I ,

P1 = A − I =
⎡
⎢⎣

0 0 1 0
0 0 0 1
0 0 1 1
0 0 0 1

⎤
⎥⎦ , P2 = (A − I )P1 = P2

1 =
⎡
⎢⎣

0 0 1 1
0 0 0 1
0 0 1 2
0 0 0 1

⎤
⎥⎦ ,

and

P3 = (A − 2I )P2 =
⎡
⎢⎣

0 0 0 1
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎦ .

Now compute the coefficient functions r j (t). Since R1(s) = (s − 1)−1, R2(s) =
(s − 1)−2, R3(s) = (s − 1)−2(s − 2)−1, and R4 = (s − 1)−2(s − 2)−2, we see that
r1(t) = et and r2(t) = tet . Use partial fraction expansions of R3(s) and R4(s) to
compute r3(t) and r4(t):

R3(s) = 1

s − 2
− 1

s − 1
− 1

(s − 1)2
�⇒ r3(t) = e2t − tet − et

R4(s) = 1

(s − 2)2
− 2

s − 2
+ 2

s − 1
+ 1

(s − 1)2
�⇒ r4(t) = te2t − 2e2t + tet + 2et .
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Put these together as in Equation (12) to get

eAt = et

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦ + tet

⎡
⎢⎣

0 0 1 0
0 0 0 1
0 0 1 1
0 0 0 1

⎤
⎥⎦

+ (e2t − tet − et)

⎡
⎢⎣

0 0 1 1
0 0 0 1
0 0 1 2
0 0 0 1

⎤
⎥⎦ + (te2t − 2e2t + tet + 2et)

⎡
⎢⎣

0 0 0 1
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎦ .

After adding the matrices we get

eAt =
⎡
⎢⎣

et 0 e2t − et te2t − e2t + et

0 et 0 e2t − et

0 0 e2t te2t

0 0 0 e2t

⎤
⎥⎦ . (16)

In Example 5 it is worth noting that the term tet appears in some of the coefficient
functions r j (t), but it does not appear in the final expression for eAt in Equation (16).
This is simply a reflection of the fact that the same coefficient functions r1(t), . . . ,
r4(t) are used in the Putzer expansion of eAt for all 4 × 4 matrices A with characteristic
polynomial (s − 1)2(s − 2)2. Some of these may need one or more of the terms tet and
te2t , but this will not be known in advance. If they are not needed in eAt , the unneeded
terms will cancel each other out.

All of the preceding examples have used matrices with only real eigenvalues. How-
ever, the algorithm of Theorem 2 is equally proficient at computing eAt for real ma-
trices that have some non-real eigenvalues. We illustrate the requisite calculations in
the following example. Observe that the intermediate steps involve complex functions,
but the imaginary parts all cancel in the final result to give a real expression for eAt .
Of course, this is inevitable since the power series definition of eAt involves only real
matrices.

EXAMPLE 6. Compute eAt for the matrix

A =
[

3 5
−1 −1

]

using Theorem 2.

The characteristic polynomial cA(s) = det(s I − A) = s2 − 2s + 2 = (s − 1)2 + 1
has roots λ1 = 1 + i and λ2 = 1 − i . Thus,

R1(s) = (s − (1 + i))−1 �⇒ r1(t) = e(1+i)t = et cos t + iet sin t,

R2(s) = ((s − 1)2 + 1)−1 �⇒ r2(t) = et sin t.

Since P0 = I and

P1 = A − λ1 I = A − (1 + i)I =
[

2 − i 5
−1 −2 − i

]
,
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Theorem 2 gives

eAt = e(1+i)t

[
1 0
0 1

]
+ et sin t

[
2 − i 5
−1 −2 − i

]

=
[

et cos t + iet sin t 0
0 et cos t + iet sin t

]
+

[
(2 − i)et sin t 5et sin t

−et sin t −(2 + i)et sin t

]

=
[

et cos t + 2et sin t 5et sin t
−et sin t et cos t − 2et sin t

]
.

The Cayley-Hamilton Theorem While it is not needed for understanding the main
results of the paper (Theorems 1 and 2), it is interesting to note that the Cayley-
Hamilton theorem itself can be proven by means of Laplace transform techniques.
We will conclude with such a proof. While this is not the most natural of the many
proofs of the Cayley-Hamilton theorem, it is very much within the spirit of the present
paper.

The key ingredient is the following calculation, which simplifies the original proof
in [1].

LEMMA 1. Let j be a nonnegative integer and let a ∈ C. Then

Dl
(
t j eat

) ∣∣∣
t=0

= D j t l
∣∣∣
t=a

,

for all nonnegative integers l.

Proof. The derivative formula Dl(yeat) = ((D + a)l y)eat implies

Dl(t j eat)

∣∣∣
t=0

= ((D + a)l t j )

∣∣∣
t=0

=
l∑

k=0

(
l

k

)
al−k(Dk t j )

∣∣∣∣
t=0

=
⎧⎨
⎩

0 if l < j
al− j l!

(l − j)! if l ≥ j

= D j t l
∣∣∣
t=a

.

We can now give the Laplace transform proof of the Cayley-Hamilton theorem.

THEOREM 3. (CAYLEY-HAMILTON) Let A be an n × n complex matrix and let
cA(s) be its characteristic polynomial. Then

cA(A) = 0.

Proof. Let cA(s) be the characteristic polynomial of A. If λ1, . . . , λm are the roots
of cA(s), i.e., the eigenvalues of A, with corresponding multiplicities r1, . . . , rm , then

cA(s) = (s − λ1)
r1 · · · (s − λm)rm . (17)

The adjoint formula for the inverse of a matrix gives

(s I − A)−1 = 1

cA(s)
Adj(s I − A) =

[
bμν(s)

cA(s)

]
,
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in which the μ, ν cofactor bμν(s) of det(s I − A) is a polynomial of degree at most
n − 1. Thus each entry of (s I − A)−1 is, by means of partial fractions, a linear combi-
nation of terms of the form (s − λk)

− j with 1 ≤ j ≤ rk . Note that

L−1

{
1

(s − λk) j

}
= 1

( j − 1)! t
j−1eλk t .

By collecting the coefficients of t j−1eλk t in L−1
{
bμν(s)/cA(s)

}
for each index μ, ν,

we may assume that there are n × n matrices M j,k , j = 0, . . . , rk − 1, k = 1, . . . , m,

so that

eAt = L−1
{
(s I − A)−1

} =
m∑

k=1

rk−1∑
j=0

t j eλk t M j,k .

Differentiating both sides l times and evaluating at t = 0 gives

Al =
m∑

k=1

rk−1∑
j=0

Dl(t j eλk t )

∣∣∣∣
t=0

M j,k =
m∑

k=1

rk−1∑
j=0

D j t l

∣∣∣∣
t=λk

M j,k,

with the second equality coming from the Lemma. Now let p(t) = c0 + c1t + · · · +
cN t N be any polynomial. Then

p(A)=
N∑

l=0

cl Al

=
N∑

l=0

m∑
k=1

rk−1∑
j=0

clD j t l

∣∣∣∣
t=λk

M j,k

=
m∑

k=1

rk−1∑
j=0

D j

(
N∑

l=0

cl t
l

) ∣∣∣∣
t=λk

M j,k

=∑m
k=1

∑rk−1
j=0 p( j )(λk)M j,k .

(18)

For the characteristic polynomial, Equation (17) shows that c( j )
A (λk) = 0 for all

j = 0, . . . , rk − 1 and k = 1, . . . , m. Now let p(t) = cA(t) in Equation (18) to
get cA(A) = ∑m

k=1

∑rk−1
j=0 c( j )

A (λk)M j,k = 0.
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The Geometry of the Snail Ball
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An amusing device called the snail ball can be found at some puzzle shops (e.g., [1],
which has a video of the device). The ball rolls down an inclined ramp, but very, very
slowly. It rolls just a few millimeters at a time, with long periods during which the ball
just stands motionless. On a six-inch ramp tilted at an angle of 4◦, the ball can take
six minutes or more to descend. This is indeed a snail-like pace of an inch a minute: a
typical snail race has fastest times of about 6 inches per minute. The device is shown
in FIGURE 1.

Figure 1 Two views of the snail ball; the second was taken 30 seconds after the first.

The mystery can be explained by some familiar concepts: the center of gravity and
the curtate cycloid curve. Recall that a point on a rolling wheel of radius r traces out
the curve r(t − a sin t, 1 − a cos t) where a is the proportion of the radius that the
tracing point is away from the rim. When a < r this is called a curtate cycloid, but we
will just use the term cycloid here for brevity.

The snail ball consists of a spherical metal shell (diameter 19 mm) hiding a smaller
core (a solid ball of diameter 12 mm) in its interior. There is also a viscous liquid in

Math. Mag. 83 (2010) 276–279. doi:10.4169/002557010X521804. c© Mathematical Association of America
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the interior (perhaps glycerol), which delays the ability of gravity to lower the core
to the bottom position. By making the simplifying assumption that the viscosity acts
very strongly to delay motion, we can use some simple geometry to explain the effect.
(The unit of viscosity is the poise, for Poiseuille; water has poise 0.894 at 25◦C while
glycerol has 1500 poise at the same temperature—roughly the same as corn syrup.)
As a bonus we can figure out the center of gravity of the snail ball without breaking it
open and weighing the components.

If a wheel has a fixed center of gravity (call it C) located below its center, then
it cannot be rolled very far. The center of gravity cannot, in the ideal case where its
initial speed is infinitesimally small, rise above its starting point (the sum of potential
and kinetic energy cannot rise and the kinetic energy is 0 at the start). Of course a small
initial speed generates some momentum, and this raises C a little before the slope of
the curtate cycloid (FIGURE 2) forces it back down to its original level; the effect of
friction thus returns it to its starting state via a damped oscillation.

C

0 20 40 60

0

9.5

19

Figure 2 When the center of gravity is not at the geometrical center of a wheel, rolling
is inhibited because of the local minimum of the curtate cycloid.

But suppose the ball is on a ramp, tilted downward at angle θ (FIGURE 3; where
the angle is an artificially steep 15◦). The cycloidal curve is tilted as well and its local
minimum is shifted a bit to the right. Thus the ball wants to roll down a short distance.
If the center of gravity were fixed, then the ball would simply settle into this new
position. But the viscous fluid allows the core to slowly return to the bottom of the
shell. When that happens the device is back to its initial state and again moves forward
a very little bit.

This model also explains the surprising back-and-forth motion of the snail ball. For
as it falls into the new minimum its momentum carries it up the other side before it
falls backward and settles into its new location.

θ

C

0 1.6

0

9.5

min

Figure 3 The tilted cycloid has its minimum at a level slightly lower than the initial
center of gravity, as shown in the magnified view.
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This geometrical view allows us to determine the center of gravity without knowing
the exact details of what is hidden inside the shell. For if the ramp is very steep, the ball
will just roll down without ever stopping: the center of gravity will rise and fall over
the bumps of the cycloid but the viewer will just see this is a variation in the speed,
which never becomes 0. Thus we can, by tilting the ramp, determine the steepest angle
that causes the ball to rest during its journey; this resting time is what allows the core
to return to the bottom and the motion to restart.

To start the experiment we place the ball on a flat surface so that the core can
settle (as in FIGURE 2) and then we tilt the ramp and ball as shown in FIGURE 3
and immediately release the ball. From this we learn that, for the particular snail ball
shown in FIGURE 1, the critical angle is about 9.5◦. What this means is that the first
local maximum of the tilted cycloid is at the same vertical level as the center of gravity
C . We can use calculus to find this maximum. The y-coordinate of the cycloid after
clockwise rotation through θ is r(1 − a cos(t + θ) − t sin θ), where r is the radius
of the ball, θ is the tilt angle, and a is the proportion of the total radius that locates
the center of gravity below the center of the ball. The derivative with respect to t is
r(a sin(t + θ) − sin θ), which we can set to 0 and solve. Making the correct choice
of solution, one finds that the maximum corresponds to t = π − arcsin((sin θ)/a) − θ

and the corresponding local maximum of the height is

r
(

1 − (π − θ) sin θ + arcsin[(sin θ)/a] sin θ +
√

a2 − sin2 θ
)

.

So now we can determine the center of gravity for the snail ball by setting r =
9.5 and θ to be the critical angle of 9.5◦. Numerical root-finding then gives the final
answer: the value of a so that the maximum just given coincides with r(1 − a cos θ),
the height of the center of gravity in its initial position. This occurs at a ≈ 0.2113,
meaning that C lies at height r(1 − a cos 9.5◦) ≈ 7.5. A visual check (see FIGURE 4,
which shows the tilted cycloid’s tangency to the horizontal from C) shows that we
have successfully located it. If the center of gravity were any higher, the ball would
roll over the invisible bump and continue down the ramp without pausing.

As typically happens, the real world device is a little more complicated than the
simplest mathematical model. The friction between the ball and the ramp plays a role:
as the core returns to its low point, the motion will not restart until the gravity force
is enough to overcome the frictional force. This helps explain why the core must end
up quite near the bottom for the restart to occur, and perhaps explains why the device
does not just move slowly down in some equilibrium state.

C

0 5.16 18.1

0

7.5

9.5

0 min max

Figure 4 When the center of gravity is at the exact same level as the next local maximum
of the tilted cycloid, the ramp is at its critical steepness.
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Figure 5 One can make a transparent snail ball using a jar, some corn syrup, and a
moderately heavy metal cylinder.

One can easily build a simple transparent version of the device. Just partially fill a
glass jar with corn syrup and then insert a heavy metal cylinder. I used a 3.5-inch di-
ameter jar with a 1.5-inch diameter cylindrical piece of aluminum to act as the weight
(FIGURE 5). One can then see the effect of friction by wrapping elastic bands around
the jar and also varying the ramp surface. A more detailed study using advanced tech-
niques from fluid dynamics is available in [2].
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Summary The snail ball is a device that rolls down an inclined plane, but very slowly, repeatedly coming to
a stop and staying motionless for several seconds. The interior of the ball is hollow, with a smaller solid ball
inside it, surrounded by a very viscous fluid. We show how to model the stop-and-start motion by analyzing the
cycloidal curve that would correspond to the motion of the center of gravity as the ball rolls down an inclined
plane.
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In both of his interesting books [5] and [6], Ross Honsberger presents and proves the
following property:

In FIGURE 1, as A moves along the circular arc B̂C , AB + AC attains
its maximum when A is the midpoint M .

(1)

In [5, Problem 9, pp. 16–17], he describes (1) as intuitively obvious and gives a proof.
Actually, the last paragraph there can be thought of as another proof. In [6, pp. 21–24],
he gives two more proofs. He attributes the first to I. van Yzeren and describes it as full
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of ingenuity, and attributes the second to K. A. Post and describes it as most elegant.
He describes the problem as unusually rich in interesting approaches. In this note, we
confirm this last phrase by giving three more proofs. We also examine how certain
steps in our proofs and in the proofs in Honsberger’s books are related to propositions
in Euclid’s Elements and to other problems in geometry.

Our proofs are simple, short, and transparent, and they prove the following state-
ment that is slightly stronger than (1):

In FIGURE 1, as A moves along the circular arc B̂C from B to the mid-
point M , AB + AC increases.

(2)
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In these proofs, we follow common practice and we denote the side-lengths and
angles of triangle ABC by a, b, c, A, B, C in the standard order, the semi-perimeter
by s, the area by [ABC], and the inradius by r . We also let A = 2α, B = 2β, C = 2γ .
The angle A can have any positive measure less than 180◦. This means that the arc B̂C
can have any size, and is not necessarily a minor arc as shown in FIGURE 1.

Proof #1. Referring to FIGURE 1 and using the law of sines and simple trigonomet-
ric identities, we obtain

b + c

a
= sin 2β + sin 2γ

sin 2α
= 2 sin(β + γ ) cos(β − γ )

2 sin α cos α
= cos(β − γ )

sin α
.

Since a and α are fixed, b + c is proportional to cos(β − γ ), and thus increases as A
moves from B to M .

Proof #2. We again refer to FIGURE 1. Using the law of cosines b2 + c2 − a2 =
2bc cos A, the area formula 2[ABC] = bc sin A, and the double-angle formulas
sin A = 2 sin α cos α, 1 + cos A = 2 cos2 α, we obtain

(b + c)2 − a2 = (b2 + c2 − a2) + 2bc = 2bc cos A + 2bc = 2bc(1 + cos A)

= bc sin A

2

4(1 + cos A)

sin A
= [ABC](4 cot α).

Since a is fixed and cot α is fixed and positive, it follows that (b + c)2 (and hence
b + c) increases with [ABC]. Since [ABC] increases as A moves from B to M along
B̂MC, so does b + c, as desired.
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Proof #3. We refer to FIGURES 2 and 3. Multiplying the obvious relation s − a =
r cot α by 2 and then by a + b + c, and using 2[ABC] = r(a + b + c), we obtain

b + c − a = 2r cot α (3)

(b + c)2 − a2 = 4[ABC] cot α. (4)

This is the last relation in the previous proof.

Beside being very short, Proof #3 has the advantage of showing that (2) still holds
if b + c is replaced by the inradius r . In fact, (4) implies that if [ABC] increases, then
b + c increases, and (3) implies that if b + c increases, then r increases. Of course, a
is fixed and hence one can also replace b + c by the perimeter 2s = a + b + c of ABC.
We combine this with (2) in the following theorem:

THEOREM 1. If A moves along the circular arc B̂C from B to the midpoint M,
then

(i) the area [ABC], (ii) the perimeter 2s, and (iii) the inradius r

of triangle ABC increase.

So far, we have taken Part (i) of Theorem 1 for granted. Its weaker form that the
maximum of [ABC] occurs at A = M has also been used as obvious in Post’s proof
in [6, p. 23]. Looking for a proof, we discovered that Theorem 1(i) appears, in dis-
guise, within Proposition EE.III.15—meaning Book III, Proposition 15—in Euclid’s
Elements. To see this, complete the circle in FIGURE 1, draw a diameter UV parallel
to BC, and drop a perpendicular AX on BC that meets UV at Y and the circle at Z ; see
FIGURE 4. Since a is fixed, [ABC] is proportional to, and hence increases with, AX.
Since XY is fixed and AZ = 2AY , AX increases with AZ. Thus Theorem 1(i) can be
restated as follows:

In FIGURE 4, as A moves along the circular arc B̂C from B to its mid-
point M , AZ increases.

(5)
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This statement is a special case, and the first step in the proof, of EE.III.15 which
reads as follows:

PROPOSITION EE.III.15. For two chords in a circle, the one that is nearer to the
center is longer.
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Although this follows immediately from Pythagoras’ theorem, Euclid’s longer
proof has the advantage of showing that this is a theorem in neutral geometry.

It is interesting that another obscure proposition of Book III is needed if the proof
of (1) that appears in [5] is to be modified so that it yields (2). That proof has two
components. The first consists in drawing an auxiliary circular arc centered at M and
passing through B and C and lying on the same side of BC as M; see FIGURE 5. For
each A on the arc B̂MC, one lets A′ be the point where the ray CA meets the new arc.
From

∠AA′ B + ∠ABA′ = ∠BAC = ∠BMC = 2∠B M ′C = 2∠B A′C,

it follows that ∠ABA′ = ∠AA′ B and AA′ = AB and hence AB + AC = AA′ +
AC = C A′. In view of this, the second component of the proof (of (2)) would need
the following statement:

In FIGURE 5, as a point A′ moves along a semi-circle ĈBM′ from B to
M ′, the length of C A′ increases.

(6)

But this is the special case P = U of EE.III.7.

PROPOSITION EE.III.7. If Û V is a semi-circle with center O and diameter UV
and if P is between O and U but not equal to O, then as X moves from U to V on
ÛV, the length of PX increases.

OPU V

X

X

X

X

Figure 6

For the sake of completeness, we mention that Proposition EE.III.8 deals with the
case when P is on the extension of OU. We also mention that it may be debatable
whether Proposition EE.III.7 was meant to cover the extreme case P = U . This may
be why this special case is added as a separate theorem in Heath’s book [4, p. 20, last
paragraph]. We also add that for proving (1) one does not need Proposition EE.III.7
but rather the simpler fact that the length of UX attains its maximum when UX is a
diameter.

We end this note with two remarks. First, the first component of the proof in [5]
described above is interesting on its own since it uses exactly the same configura-
tion used in the proof of the celebrated Broken Chord Theorem of Archimedes; see
[7, pp. 1–2] and compare with FIGURE 5. Secondly, it should be mentioned that our
Proof #1 is inspired by a lemma that Robert Breusch had designed to solve a Monthly
problem; see [8]. That lemma, together with its proof, is reproduced in [1] and [2],
where it is used by the present author to give short proofs of Urquhart’s theorem and
of a stronger form of the Steiner-Lehmus theorem. Hyperbolic versions of Breusch’s
Lemma, Urquhart’s Theorem, and the Steiner-Lehmus Theorem can be found in [9,
4.19–4.21, pp. 151–158].

(The title of this note alludes to the author’s paper [3] on a different Honsberger
topic.)
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Summary In two of his books, Ross Honsberger presented several proofs of the fact that the point A on the
circular arc B̂C for which AB + AC is maximum is the midpoint of the arc. In this note, we give three more
proofs and examine how these proofs and those of Honsberger are related to propositions in Euclid’s Elements
and, less strongly, to other problems in geometry such as the broken chord theorem, Breusch’s lemma, Urquhart’s
theorem, and the Steiner-Lehmus theorem.
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There are many theorems that are widely known among serious students of mathemat-
ics, but there are far fewer proofs that are part of our common culture. One of the best
known proofs is Georg Cantor’s diagonalization argument showing the uncountability
of the real numbers R. Few people know, however, that this elegant argument was not
Cantor’s first proof of this theorem, or, indeed, even his second! More than a decade
and a half before the diagonalization argument appeared Cantor published a different
proof of the uncountability of R. The result was given, almost as an aside, in a pa-
per [1] whose most prominent result was the countability of the algebraic numbers.
Historian of mathematics Joseph Dauben has suggested that Cantor was deliberately
downplaying the most important result of the paper in order to circumvent expected
opposition from Leopold Kronecker, an important mathematician of the era who was
an editor of the journal in which the result appeared [4, pp. 67–69]. A fascinating ac-
count of the conflict between Cantor and Kronecker can be found in Hal Hellman’s
book [6]. A decade later Cantor published a different proof [2] generalizing this result
to perfect subsets of R

k . This still preceded the famous diagonalization argument by
six years.

Mathematical culture today is very different from what it was in Cantor’s era. It is
hard for us to understand how revolutionary his ideas were at the time. Many mathe-
maticians of the day rejected the idea that infinite sets could have different cardinali-
ties. Through much of Cantor’s career many of his most important ideas were treated
with skepticism by some of his contemporaries (see [6] for an interesting account of
some of the disputes).
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As mentioned above, Cantor’s first proof was in a paper [1] whose main result was
the countability of the algebraic numbers—those real numbers which are roots of poly-
nomials with integer coefficients. Since the real numbers are uncountable and the alge-
braic numbers are only countable there must be infinitely many (in fact, uncountably
many) real numbers which are not algebraic. Such numbers are called transcendental.
The fact that transcendental numbers exist had been established by Joseph Liouville,
only about thirty years earlier and was itself still the subject of controversy.

Cantor’s early proofs of uncountability are nearly as simple as his more famous di-
agonalization proof and deserve to be better known. In this expository note we present
all three of these proofs and explore the relationships between them. Understanding
multiple proofs of an important result almost always leads to a deeper understanding
of the concepts involved.

Cantor’s first proof

Recall that a set X is countably infinite if there is a bijection (or one-to-one corre-
spondence) between the elements of X and the natural numbers N = {1, 2, 3 . . . }.
Equivalently, X is countably infinite if there is a sequence {xk}∞

k=1 of distinct elements
in which every element of X occurs precisely once. An infinite set that is not count-
able is called uncountable. So to prove that a set X is uncountable we must show that
for every sequence {xk}∞

k=1 of distinct elements of X there must be an element of X
which is omitted by that sequence. Different sequences will omit different elements,
of course, but there is no one sequence which contains every element of X .

Cantor’s first proof of the uncountability of R was published in 1874 and is based
on the fact that bounded monotonic sequences of real numbers converge.

THEOREM 1. (CANTOR [1]) If {xk}∞
k=1 is a sequence of distinct real numbers there

is at least one z ∈ R which does not occur in this sequence.

Proof. Let {xk}∞
k=1 = x1, x2, . . . be a sequence of distinct real numbers. Define a

sequence of closed intervals In = [an, bn] as follows. Let a1 be the smaller of x1 and
x2 and b1 be the larger. Define I1 to be [a1, b1]. We define In recursively. Given the non-
trivial interval In−1 = [an−1, bn−1] let y and y′ be the first two elements of the sequence
{xk}∞

k=1 which lie in the open interval (an−1, bn−1). (Clearly such y and y′ must exist
or there are infinitely many choices of elements of the interior of In−1 which are not
in the sequence {xk}∞

k=1 and our proof is done.) Define an to be the smaller of y and y′
and bn to be the larger and let In = [an, bn].

From their construction it is clear that these closed intervals are non-trivial and
nested. That is, for each index n,

an−1 < an < bn < bn−1,

and hence In ⊂ In−1. So the sequence {ak}∞
k=1 is strictly increasing and bounded above

(for example any bn is an upper bound) and the sequence {bk}∞
k=1 is strictly decreasing

and bounded below.
Cantor then appealed to the fact that bounded monotonic sequences always have

limits. He defined:

a∞ = lim
n→∞ an and

b∞ = lim
n→∞ bn

He observed that since an < bn for all n, we have a∞ ≤ b∞ and the interval [a∞, b∞]
contains at least one point.
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If z ∈ [a∞, b∞] then

an < z < bn for all n ∈ N, (1)

and in particular z 	= an and z 	= bn .
We will prove by contradiction that z cannot occur in the sequence {xk}∞

k=1. To do
this we assume z is in the sequence and show this assumption leads to a contradiction.
If z does occur in this sequence then there are only finitely many points preceding
it in the sequence and hence only finitely many elements of the subsequence {an}∞

n=1
preceding it. Let am be the last element of the subsequence {an}∞

n=1 which precedes z
in the sequence {xk}∞

k=1.
We defined am+1 and bm+1 to be the first two elements of the sequence {xk}∞

k=1 which
lie in the interior of Im . Since z is in the interior of Im , by Equation (1), and is not
equal to either am+1 or bm+1, it must be that am+1 and bm+1 precede z in the sequence
{xk}∞

k=1. This contradicts the definition of am as the last element of the subsequence
{an}∞

n=1 preceding z in this sequence. This contradiction implies that the assumption
that z is in the sequence {xk}∞

k=1 is false and hence proves the result.

Cantor also remarked that, in fact, the sequence {xk}∞
k=1 omits at least one point in

any non-empty open interval (a, b), because we could choose a1 and b1 to be the first
two points of the sequence which lie in this interval. According to historian Joseph
Dauben, this published proof benefited from some simplifications due to the German
mathematician Richard Dedekind who had seen a more complicated early draft [4, pp.
50–52].

Indeed, the heart of this proof is the fact that bounded monotonic sequences have
limits. Mathematicians in 1874 would have accepted this as a fact, but it is worth
remembering that the rigorous foundations for results such as this were still being
established. It was only two years earlier, in 1872, that Dedekind had published his
monograph, Stetigkeit und irrationale Zahlen, or Continuity and irrational numbers
[5]. It was in this monograph that he introduced what we now call “Dedekind cuts” as
a foundation for the construction of the real numbers. This construction provided the
basis for what in modern terminology is called the completeness of the real numbers
and in particular the existence of limits for bounded monotonic sequences.

Perfect sets

In 1884 Cantor published a generalization of Theorem 1 which asserts that any perfect
subset of R

k is uncountable. Recall that a subset X of R
k is said to be perfect if X is

closed and every point x of X is a limit of a sequence of points in X which are distinct
from x .

THEOREM 2. (CANTOR [2]) Suppose X is a perfect subset of R
k . Then X is un-

countable.

Proof. We will again show that if {xn}∞
n=1 is a sequence in X , then there is a z ∈ X

which is not a term in this sequence.
Since X is perfect, for every x in X , a ball of any positive radius centered at x

contains infinitely many points of X . From this it is easy to see that if B is a closed
ball in R

k centered at a point of X , and y is any point of X , then there is another closed
ball B ′ which is contained in B, is centered at a point of X , and does not contain the
point y.

This property is used to construct recursively a sequence {zn}∞
n=1 which has a limit

z which is not an element of our original sequence. At the same time we construct a
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nested sequence of closed balls {Bn}∞
n=1 with each Bn centered at zn . Let B0 be any

closed ball of positive diameter D centered at a point z0 of X . Given Bn−1 choose a
closed ball Bn such that

• The ball Bn is a subset of Bn−1;
• The center of the ball Bn , which we denote zn , is a point of X ;
• The ball Bn does not contain the point xn; and
• The diameter of Bn is at most half the diameter of Bn−1.

Notice that, for 1 ≤ m ≤ n, the point xm is not in Bn .
From the fact that each successive diameter is at most half of the previous one, it

is easy to see by induction that the diameter of Bn ≤ D/2n . Cantor observed that the
sequence {zn}∞

n=1 is what we now call a Cauchy sequence. This is because if n, m > N ,
then zn and zm are in BN so

‖zn − zm‖ <
D

2N
.

Since the sequence {zn}∞
n=1 is a Cauchy sequence it has a limit in R

k which we will
denote z. Since X is a closed set and zn ∈ X , the limit point z is also in X .

For any n > 0, all of the points zm with m ≥ n are in the closed ball Bn so their
limit z must also be in Bn . But recall that by construction the point xn is not in Bn .
Hence for every n it must be that z 	= xn .

Using what we now know about compactness the proof above can be significantly
simplified. Having constructed a nested family of balls Bn each of which contains
some point of X and with xn /∈ Bn , we don’t need to worry about centers or diameters
or Cauchy sequences. Instead we let Zn = X ∩ Bn . Then Zn is closed and bounded
and hence compact. It is also non-empty since each Bn contains at least one point
of X . And, of course, Zn ⊂ Zn−1. These properties imply that the nested intersection⋂∞

n=1 Zn is non-empty. If z is a point of this intersection then for each n ∈ N, z ∈ Bn

and hence z 	= xn . So the point z is not in the sequence {xn}∞
n=1.

Of course this line of proof was not available to Cantor. He could not have known
that a nested intersection of non-empty compact sets is non-empty—indeed the con-
cept of compactness was unknown at the time he wrote this paper. It was not until 1894
that Émile Borel proved that an open cover of a closed interval has a finite subcover.
See [7] for a history of the concept of compactness. What we consider the standard
properties of compactness were not developed until the 20th century.

Cantor published this result in §16 of [2]. It is interesting that it appeared a decade
after his first proof (Theorem 1) and still well prior to the so-called diagonalization
proof which we discuss in the next section. It certainly bears a resemblance to his first
proof but, as we will see, it also strongly foreshadows the more famous diagonalization
argument.

The diagonalization proof

More than a decade and a half after his first proof Cantor published the much more
famous proof of the uncountability of R which has become associated with his name.
This was the introduction of what is now called the Cantor diagonalization argument.

THEOREM 3. (CANTOR [3]) The unit interval [0, 1] is not countable.

Proof. Let X denote the subset of [0, 1] consisting of those numbers which have
decimal representations containing only the digits 4 and 9. We choose 4 and 9 for
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concreteness; other choices would work as well. We know in general that two different
decimal expansions can represent the same real number. For example,

0.4999 · · · = 0.5000 . . . ,

where the first decimal ends in an infinitely repeating sequence of 9’s and the second
in an infinitely repeating sequence of 0’s. But if we allow ourselves only to use the
digits 4 and 9 there is only one way to write this number.

Indeed, the representation for any number in the set X using only the digits 4 and
9 is unique. To see this suppose u and v are elements of X , so they have decimal
representations using only 4 and 9; or more formally, suppose

u =
∞∑

i=1

ui

10i
, and v =

∞∑
i=1

vi

10i
,

where each ui and vi is either 4 or 9. Suppose these decimal representations differ first
in the nth place, so ui = vi for 1 ≤ i < n and un 	= vn . Let w denote the number with
decimal representation equal to the decimal representation of u and v in places 1 to
n − 1 (where they agree) and with 0 in all other places so

w =
n−1∑
i=1

ui

10i
=

n−1∑
i=1

vi

10i

Since u and v disagree in the nth place the larger of them has a 9 in this place and
must be greater than w + 9 × 10−n . Similarly, the smaller of u and v has a 4 in the nth
place and must be at most w + 5 × 10−n . Hence |u − v| > 4 × 10−n > 0 so u 	= v.
This shows that two different decimal representations, which use only the digits 4 and
9, must actually represent different numbers.

Now given any sequence {xk}∞
k=1 in X we define an element z by specifying its

decimal expansion using a process called diagonalization. Specifically let

z =
∞∑

k=1

zk

10i
,

where

zk =
{

4, if the kth decimal digit of xk is 9;
9, if the kth decimal digit of xk is 4.

We conclude that z is in X , since its decimal expansion contains only the digits 4 and
9. But it is not an element of the sequence {xk}∞

k=1 since z differs from xk in the kth
decimal place. It follows that it is not possible to enumerate the elements of the set X .
In other words, there is no sequence {xk}∞

k=1 of elements of X which contains all the
elements of X . This proves X is uncountable.

There is a subtle point here. We have not found one z which is omitted from every
sequence {xk}∞

k=1. Instead we have shown that for each sequence {xk}∞
k=1 there is an

omitted z—different sequences will omit different elements of X .
Since [0, 1] contains the uncountable set X , it must also be uncountable. (We are

using the fact that a subset of a countable set is also countable.)

There are two parts to this proof. In the first part we showed that there is a subset X
whose elements can be uniquely specified by a decimal expansion containing only the
digits 4 and 9, i.e., an infinite sequence of 4’s and 9’s. In fact, Cantor did not include
this part of the proof in his original paper. It is not difficult to show and he probably
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considered it obvious. He also did not use 4 and 9 but instead used the letters m and w

to represent arbitrary distinct digits. Essentially the same argument given above will
show that two decimal representations of a single number must be identical if they
both use only the same two digits.

The second part of the proof uses what has come to be called a diagonalization
argument to show that the collection of all such infinite sequences is not countable.
The term diagonalization is used because one way to view the construction of z given
in the proof is to use the sequence {xn} in X to make an infinite matrix M . The first
row of the matrix M consists of the decimal digits of x1, the second row the decimal
digits of x2, and the nth row the decimal digits of xn . So Mi j is the j th decimal digit
of xi . Then the element z which does not occur in the sequence is obtained from the
diagonal of M . More precisely zn , the nth decimal digit of z, is 4 if Mnn = 9 and 9
if Mnn = 4. Then z does not correspond to any row of the matrix M because the nth
decimal digit of z is different from the diagonal entry Mnn . So z does not correspond
to any row of the matrix M and hence z is not in the sequence {xn}.

As mentioned above the proof for perfect subsets of R
k (Theorem 2 above) strongly

foreshadows the diagonalization argument. To see this, let X be the subset of [0, 1]
consisting of those numbers with decimal representations containing only the digits 4
and 9. It is an easy exercise to show that X is perfect, though we will not need this fact.
Let X0 = X and let Xn be the subset of Xn−1 consisting of all of those points whose
nth decimal digit (4 or 9) is different from the nth decimal digit of xn . Then {Xn}∞

n=0 is
a nested family of compact sets and

⋂∞
n=1 Xn consists of the single point produced by

the diagonalization in the proof of Theorem 3.
There is a slightly different and very clever way to make the diagonalization part of

Cantor’s argument. Recall that P(N), the power set of the natural numbers N, is the set
of all subsets of N. We first observe that there is a bijection from X , the set of infinite
sequences of 4’s and 9’s, to P(N). This bijective correspondence is given by

A ←→ {xn}∞
n=1

where A is a subset of N and xi = 9 if i ∈ A and xi = 4 otherwise. Thus, it suffices to
show that the set P(N) is uncountable. This can be done as a special case of a more
general argument.

PROPOSITION 4. Suppose S is a non-empty set and f : S → P(S) is a function
from S to its power set. Then f is not surjective.

Proof. For each x ∈ S either x ∈ f (x) or x /∈ f (x). Let Y = {y ∈ S | y /∈ f (y)}.
Let x be any element of S. From the definition of Y we observe that x is in Y if and
only if x is not in the set f (x). Hence the sets Y and f (x) can never be equal since one
of them contains x and the other does not. Therefore, there is no x with f (x) = Y , so
f is not surjective.

This proposition implies that any set S has a cardinality which is less than that of its
power set P(S) and, in particular, P(N) is uncountable. The proof of Proposition 4 is
really just a disguised version of the diagonalization argument and consequently this
proposition is also sometimes referred to as Cantor’s diagonalization theorem.

Acknowledgment Supported in part by NSF grant DMS0901122.
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Nothing Lucky about 13
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Recently, a high school teacher came across the following problem which he passed
on to a forum for mathematics teachers:

Evaluate cos

(
2π

13

)
+ cos

(
6π

13

)
+ cos

(
8π

13

)
.

One could solve this in a number of elementary ways, and as we will show below, the
value turns out to be −1+√

13
4 . The point here is to find what is special about 13 and

about 2, 6, 8.
Without further ado, let us break the illusion that 13 might be particularly “lucky”

to admit such a simple expression: We show a corresponding result for every prime
number congruent to 1 modulo 4 and, indeed, for every prime.

Here we will explain briefly how to prove for any prime number p ≡ 1 modulo 4
the identity

∑
a∈Q

cos

(
2aπ

p

)
= −1 + √

p

2
, (1)

where the sum is over the set Q of quadratic residues mod p; that is, a ∈ Q if 1 ≤
a ≤ p − 1 and for some integer b, a ≡ b2 mod p. When p ≡ 1 mod 4, then −1 is a
square mod p; indeed, for those who know it, we mention that Wilson’s congruence
(p − 1)! ≡ −1 mod p simplifies to ((

p−1
2 )!)2 ≡ −1 mod p in the case p ≡ 1 mod 4.

Thus the squares mod p (as well as the nonsquares mod p) come in pairs a, −a with

Math. Mag. 83 (2010) 289–293. doi:10.4169/002557010X521840. c© Mathematical Association of America
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exactly one of these less than or equal to (p − 1)/2. As cos(t) = cos(−t), the identity
(1) could be rewritten as

∑
a∈Q

a≤(p−1)/2

cos

(
2aπ

p

)
= −1 + √

p

4
,

and this explains the opening result, as the squares mod 13 are ±1, ±3, ±4.
The identity mentioned for primes congruent to 1 mod 4 has an analog for primes

congruent to −1 mod 4.
The secret is the so-called Gauss sum, which Gauss used to prove the quadratic

reciprocity law. Let p be an odd prime. The Gauss sum is the expression
∑p−1

a=1 ±za ,
with z = e2iπ/p, where we use a plus sign if a is a square mod p and put a minus sign
if a is not. The Legendre symbol

(
a
p

)
, which denotes 1 or −1 depending on whether a

is a square mod p or not, allows us to express this more clearly: Write

G :=
p−1∑
a=1

(
a

p

)
za .

It is a remarkable fact that G2 = ±p with the sign determined by whether p ≡ ±1
mod 4. With some care for the signs, we can show that G is

√
p or i

√
p as p is 1 or

−1 mod 4 [1, pp. 70–76]. We have, therefore,

G =
p−1∑
a=1

(
a

p

)
za =

{√
p if p ≡ +1 mod p, and

i
√

p if p ≡ −1 mod p.
(2)

(A different choice of primitive pth root of unity as z can lead to a different sign for
G.)

In this note we will first show how to use (2) to prove identities like (1) and its
analogy for primes congruent to −1 mod 4. After this main result, we make a brief
tour of the history of Gauss sums and, specifically, of the determination of their signs.
Finally, we give a proof of (2).

The main result is :

THEOREM. Let p be an odd prime and let Q be the subset of squares in Z
∗
p. Then,

(i) if p ≡ 1 mod 4, so that Q = T ∪ −T with T ⊆ {1, . . . ,
p−1

2 }, then

∑
a∈Q

cos

(
2aπ

p

)
= 2

∑
b∈T

cos

(
2bπ

p

)
= −1 + √

p

2
.

(ii) If p ≡ −1 mod 4, so that Z
∗
p = Q ∪ −Q, then

∑
a∈Q

sin

(
2aπ

p

)
=

√
p

2
and

∑
a∈Q

cos

(
2aπ

p

)
= −1

2
.

Remark The prime 2 is special and, when we apply the proof below to it, we get the
trivial identity cos(π) = −1.

Proving the theorem We consider first the case when p ≡ 1 mod 4, when Q =
T ∪ −T with T ⊆ {1, . . . ,

p−1
2 }. If N denotes the nonsquares mod p,

G = √
p =

∑
a∈Q

za −
∑
b∈N

zb.
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On the other hand, since it is well known that the sum of the roots of unity sum to zero,
we have

−1 =
∑
c∈Z

∗
p

zc =
∑
a∈Q

za +
∑
b∈N

zb. (3)

Adding the two equations and substituting z = e2i p/p, we have

−1 + √
p = 2

∑
a∈Q

za =
∑
a∈Q

(za + z−a) =
∑
a∈Q

2 cos

(
2aπ

p

)

which is our first claim.
If p ≡ −1 mod 4, so that Z

∗
p = Q ∪ −Q, then G = i

√
p gives

∑
a∈Q

(za − z−a) = i
√

p;

which quickly simplifies to
∑

a∈Q 2 sin(2aπ/p) = √
p. The second identity in (ii)

follows immediately from (3).

Some history of Gauss sums Gauss sums were introduced by Gauss in 1801, when
he stated some of their properties and used them to prove the quadratic reciprocity law
in different ways. Gauss wrote that he had studied since 1805 the theory of cubic and
biquadratic residues and, since results for these proved elusive, that he was motivated
to find more proofs of the quadratic reciprocity law, hoping that one of them would
yield a generalization for higher reciprocity laws. Gauss’s fourth and sixth proofs of
the quadratic reciprocity law used Gauss sums and, indeed, proved successful in in-
vestigating higher reciprocity laws.

The sign of the Gauss sum was a notoriously difficult question; he recorded the
correct assertion in his mathematical diary in May 1801, but could find a proof only
in 1805. He says in a letter to Olbers written in September 1805 that he was annoyed
by this inability to determine the sign and that hardly a week went by for those 4
years when he did not make one or more unsuccessful attempt. He says that finally the
mystery was solved “the way lightning strikes” [1].

As mentioned earlier, if z is a primitive pth root of unity, the sign of the sum∑p−1
a=1

(
a
p

)
za depends on the choice of z. However, the key observation seems to be

that the equality

p−1∑
a=0

(
a

p

)
za =

(p−1)/2∏
b=1

(z−b/2 − zb/2)

holds for any choice of primitive pth root of unity z. This can be deduced from a result
on polynomials and, it is in this context that Gauss introduced the so-called Gaussian
polynomials which generalize the binomial coefficients. Proofs to determine the sign
of the Gauss sum were found later by Kronecker, Schur, Mertens, etc. A beautiful
proof by Schur appears in Landau’s classic German text [2, pp. 162–166]. Although
Ireland and Rosen is a convenient modern reference for the Gauss sum computation
[1, pp. 70–76], we take the liberty of recalling Schur’s proof briefly for the sake of
English-speaking readers.

THEOREM. Let n > 0 be odd. Then S := ∑n−1
s=0 e2iπs2/n = √

n or i
√

n depending
on whether n ≡ ±1 mod 4.



292 MATHEMATICS MAGAZINE

Before proving this result, we mention that when n is prime, S = G, the Gauss sum.
This is again due to the observation that

∑p−1
a=0 e2iπa/p = 0 mentioned earlier.

Proof (Schur). Put z = e2iπ/n and consider the n × n matrix A = (zkl)0≤k,l<n. Our
sum is S = ∑

k zk2 = tr A = ∑n
r=1 λr , where λ1, . . . , λn are the eigenvalues of A.

Viewing S as the trace of a matrix involving roots of unity proves advantageous be-
cause sums involving roots of unity often admit lots of cancellations.

The u, v entry of A2 is (A2)u,v = ∑
w z(u+v)w = bu+v , where bm = ∑

w zmw. If
n | m, then evidently bm = ∑

w zmw = ∑
w 1 = n. On the other hand, if n � m, we

have zmbm = ∑
w zm(w+1) = bm , which gives bm = 0 since zm 
= 1. Note that

∑
r λ2

r =
tr A2 = ∑

u b2u = n. Also, (A4)uv = ∑
w bu+wbw+v = n2 or 0, depending on whether

u = v or not. Thus A4 = n2 I where I is the n × n identity matrix.
The characteristic polynomial χA4(λ) of A4 is (λ − n2)n, which means that the

eigenvalues λ4
1, . . . , λ4

n are all equal to n2. In particular, λr = i ar
√

n where ar = 0,
1, 2, or 3. For each k = 0, 1, 2, 3, we count the number of eigenvalues with that power
of i , by setting mk = |{ar : ar = k}|. Note that m0 + m1 + m2 + m3 = n, because there
are n eigenvalues.

We first show that |S|2 = n. We start with

|S|2 = SS̄ =
n−1∑
s=0

zs2
n−1∑
t=0

z−t2 =
∑
s,t

zs2−t2 =
∑
s,t

z(s+t)2−t2

=
∑

s,t

zs2+2st =
∑

s

(
zs2 ∑

t

z2st

)
.

As z = e2iπ/n, we have
∑

t z2st = ∑
t e4iπst/n = n or 0 depending on whether n | s or

not. Therefore, |S|2 = n and it remains to establish which square root gives the correct
value of S.

Since S is determined in terms of the eigenvalues λr s which, in turn, depend on
the mi s, we try to obtain linear equations satisfied by the mi s as a consequence of the
equality |S|2 = n. Continuing with the proof, since

S =
∑

r

λr =
∑

r

i ar
√

n = √
n(m0 + im1 − m2 − im3)

and |S|2 = n, we have (m0 − m2)
2 + (m1 − m3)

2 = 1. In other words, either m0 −
m2 = ±1 and m1 = m3 or m0 = m2 and m1 − m3 = ±1. Hence S = vη

√
n where

v = ±1 and η = 1 or i . Thus, we have in terms of the mi s, the equation

m0 + im1 − m2 − im3 = vη

and its conjugate

m0 − im1 − m2 + im3 = vη−1.

Also, the equality tr A2 = ∑
r λ2

r = n observed earlier gives the equation

m0 − m1 + m2 − m3 = 1.

Thus, the system of four linear equations can be written as a matrix equation Bx = y,
where

B =
⎛
⎜⎝

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎞
⎟⎠ , x =

⎛
⎜⎝

m0

m1

m2

m3

⎞
⎟⎠ , and y =

⎛
⎜⎝

n
vη

1
vη−1

⎞
⎟⎠ .
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Inverting this matrix, we get x = B−1 y with

B−1 = 1

4

⎛
⎜⎝

1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

⎞
⎟⎠ .

In particular, m2 = n+1−v(η+η−1)

4 being an integer implies that η = 1 or i , depending
on whether n ≡ 1 mod 4 or n ≡ 3 mod 4. Further, det A = ∏

r λr = nn/2im1+2m2−m3

= nn/2i3(n−1)/2v = nn/2i n(n−1)/2v; to obtain this, we have used the fact, obtained from
x = B−1 y, that m1 + 2m2 − m3 is n+1

2 − v or n+1
2 + v depending on whether n ≡ 1 or

3 mod 4. We have also used iv = iv to simplify.
Finally, we show that v = 1: This will be a consequence of evaluating—in two

different ways—the determinant of the matrix A:

det A =
∏

0≤l<k<n

(
e2iπk/n − e2iπl/n

) =
∏
l<k

eiπ(k+l)/n
(
eiπ(k−l)/n − eiπ(l−k)/n

)
.

From
∑

0≤l<k<n(k + l) = n(n − 1)2/2, we have

∏
l<k

eiπ(k+l)/n = eiπ(n−1)2/2 = i (n−1)2 = 1.

Hence

det A =
∏
l<k

(eiπ(k−l)/n − eiπ(l−k)/n) =
∏
l<k

(
2i sin

π(k − l)

n

)

= i n(n−1)/2
∏
l<k

(
2 sin

π(k − l)

n

)
.

As the last mentioned product is positive, the two expressions det A = nn/2i n(n−1)/2v =
i n(n−1)/2

∏
l<k

(
2 sin π(k−l)

n

)
imply that v > 0 and is, therefore, equal to 1.
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Proof Without Words:
The Alternating Harmonic Series Sums to ln 2

CLAIM.
∞∑

n=0

(−1)n 1

n + 1
= ln 2.

1 · · · −1

2
+ 1

3
− · · · −1

4
+ 1

5
− 1

6
+ 1

7
− · · ·

y = 1/x

1 3/2 2

2/3

1 5/4 3/2 7/4 2

4/7
2/3
4/5

−1

8
+ 1

9
− 1

10
+ 1

11
− 1

12
+ 1

13
− 1

14
+ 1

15
− · · · =

∫ 2

1

1

x
dx = ln 2

—Matt Hudelson
Washington State University

Pullman WA 99164

Summary We demonstrate graphically the result that the alternating harmonic series sums to the natural log-
arithm of two. This is accomplished through a sequence of strategic replacements of rectangles with others of
lesser area. In the limit, we obtain the region beneath the curve y = 1/x and above the x-axis between the values
of one and two.
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Period Three Begins
CHENG ZHANG
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The logistic map

xn+1 = f (xn) ≡ r xn(1 − xn), (1)

where xn ∈ [0, 1] and r ∈ [0, 4], manifests many trademark features in nonlinear dy-
namics, such as period-doubling and chaos [1, 2]. Surprisingly, all the complex behav-
iors can be explored by setting the parameter r to different values. We focus on the
particular value r∗ = 1 + √

8 ≈ 3.8284, which gives birth to the period-three cycle,
where the system repeats itself every three iterations, meaning that xn+3 = xn . One
way to visualize the period-three cycle is to draw the iterating process on the cobweb
plot, see FIGURE 1.

There are several different ways to derive the value r∗ [3, 4, 5, 6]. The first demon-
stration, given by Saha and Strogatz [3], unfortunately involves heavy algebraic manip-
ulation. Later on, Bechhoefer [4] gives a simpler proof, where f ( f ( f (x))) is expanded
directly as a polynomial of x , and the coefficients are compared with their expected
values. Gordon [5] approaches the problem by writing down the Fourier transformed
version of (1) and then comparing the coefficients of different components on both
sides of the equation. A more recent derivation is provided by Burm and Fishback [6]
using Sylvester’s theorem.

Here we present a new elementary derivation based on the geometry of the cobweb
plot FIGURE 1.

A

B

C
A′

B ′

C ′

x

y

Figure 1 The cobweb plot of the logistic map for r = 3.84

The proof Let us first denote the x-coordinates of A, B, and C in FIGURE 1 as a,
b, and c, respectively. The map defines a cyclic relation of a, b, and c: b = f (a),
c = f (b), and a = f (c). Our derivation is based on

A′ A + B ′ B + C ′C = 0, (2)

Math. Mag. 83 (2010) 295–297. doi:10.4169/002557010X521859. c© Mathematical Association of America
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where we have used overbars to denote signed distance. Since AB ′ = A′ A, we can
express B ′ B as (B ′ B/AB ′) A′ A. The ratio B ′ B/AB ′ can be directly calculated as
[ f (b) − f (a)]/(b − a) = r(1 − a − b). Similarly, we calculate the ratio C ′C/BC ′ =
r(1 − b − c) and replace C ′C by (C ′C/BC ′) (B ′ B/AB ′) A′ A. With the common fac-
tor A′ A eliminated, (2) becomes

1 + r(1 − a − b) + r 2(1 − a − b)(1 − b − c) = 0. (3)

The other two symmetrical versions of (3) can be reached by cycling the symbols
a → b, b → c, c → a twice. We now sum over the three resulting equations

3 + r [3 − 2(a + b + c)]
+ r 2[3 − 4(a + b + c) + (a + b + c)2 + ab + bc + ca] = 0. (4)

We can further reduce (4) to an equation of a single variable X = a + b + c by using
the following two identities 2(ab + bc + ca) = (a + b + c)2 − (a2 + b2 + c2), and
r(a2 + b2 + c2) = (r − 1)(a + b + c); the latter follows from the fact b + c + a =
f (a) + f (b) + f (c). Thus, we have

r 2 X 2 − (3r + 1)r X + 2(1 + r + r 2) = 0. (5)

The discriminant of the quadratic is � = r 2(r 2 − 2r − 7). If it is positive, the equa-
tion has two roots; correspondingly, the system has two period-three cycles: a stable
one and an unstable one. If it is negative, there is no root, which means that there
is no period-three cycle. At the onset of period-three, the discriminant is zero, and
the solution of � = 0 gives the desired result r∗ = 1 + √

8. Note, the other root
r∗ = 1 − √

8 ≈ −1.8284 also gives the onset of period three for the negative r case,
see FIGURE 2.

A

B

CA′

B ′

C ′

x

y

Figure 2 The cobweb plot for r = −1.8285

The same derivation applies to any quadratic function f (x). Actually, the algebra is
much simpler if we first transform the original logistic map to yn+1 = R − y2

n through
a change of variables, yn = r(xn − 1/2), R = (r 2 − 2r)/4 [2]. In this case, the coun-
terpart of (5) is X 2 − X + 2 − R = 0, with the discriminant being 4R − 7. The zero-
discriminant condition is readily translated to R∗ = 7/4, or equivalently r∗ = 1 ± √

8,
which agrees with the previous result.
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Summary By exploiting the geometry of the cobweb plot, we provide a simple and elementary derivation of
the parameter for the period-three cycle of the logistic map.

Stacking Blocks and Counting Permutations
LARA K. PUDWELL
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Valparaiso, Indiana 46383
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In this paper we will explore two seemingly unrelated counting questions, both of
which are answered by the same formula. In the first section, we find the surface areas
of certain solids formed from unit cubes. In second section, we enumerate permuta-
tions with a specified set of restrictions. Next, we give a bijection between the faces
of the solids and the set of permutations. We conclude with suggestions for further
reading. First, however, it is worth explaining how this paper came about.

The author received an email from David Harris while he was helping his 12-year-
old daughter Julia complete a project for her math class. Together the Harrises con-
structed triangular piles of cubes. After creating an increasing sequence of these piles,
they computed the surface area of each pile, and hoped to find a formula for the surface
area of their nth pile. This project and its solution are described in the next section.
At the time of their correspondence, David and Julia had deduced several facts about
the construction but had not yet found a formula for the surface area in general. When
they searched for the first few terms in their sequence, Google returned only one hit: a
Maple data file on the author’s website.

The sequence that the Harrises discovered online was originally generated in the
context of pattern-avoiding words and permutations. Their web search produced a
conjecture that gives a nice geometric interpretation of a question about permutation
patterns. This serendipitous discovery of the surprising and beautiful connection be-
tween a geometry problem and an enumeration problem illustrates how attractive new
results may sometimes appear in such a surprising place as a middle-school homework
exercise.

Math. Mag. 83 (2010) 297–302. doi:10.4169/002557010X521868. c© Mathematical Association of America
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The surface area of cubes We begin with the Harrises’ original geometry question.
We first describe a recursive construction involving unit cubes, and then compute the
surface area of the nth solid in this construction.

The first solid is a unit cube, which has surface area 6. To construct the nth solid,
first form a row of 2n − 1 cubes. Then, center the (n − 1)st construction on top of this
row. For example, the second solid is shown in FIGURE 1. It has surface area 18. The
third solid is also shown. It has surface area 34.

Figure 1 The first, second, and third solids

Now, we wish to compute the surface area SA(n) of the nth solid. We have already
computed SA(1), SA(2), and SA(3) above.

To construct SA(n), we glue together a solid of surface area SA(n − 1) together
with a rectangular prism of surface area 4 · (2n − 1) + 2 = 8n − 2. However, there
are 2n − 3 pairs of squares that overlap, and that become part of the interior of the
shape. Thus, the surface area only increases by (8n − 2) − 2(2n − 3) = 4n + 4 units;
that is, SA(n) − SA(n − 1) = 4n + 4. Since we know that SA(1) = 6, it is easy to
prove by induction that SA(n) = 2n2 + 6n − 2 for all n ≥ 1.

Permutation patterns We have proved that the surface area of the Harrises’ nth
solid is 2n2 + 6n − 2. We now give the necessary definitions to produce a set of per-
mutations with 2n2 + 6n − 2 elements.

For this paper, a permutation is just a string of digits, such as 112 or 2671165.
(Really, a permutation is a string of integers, but fortunately, we will never need in-
tegers with more than one digit in our examples.) In particular, we are interested in
strings in which each digit appears exactly twice. We write S(2)

n to denote the set of
permutations of two 1’s, two 2’s, and so on up to two n’s. For example S(2)

1 = {11} and
S(2)

2 = {1122, 1212, 1221, 2112, 2121, 2211}. Typically, a permutation refers to an or-
dering of n distinct letters. Since we are considering permutations with more than one
copy of each letter we may refer to our permutations as multiset permutations.

Now, we will say what it means for a permutation to contain a certain pattern, or to
avoid a pattern. Given a string of numbers s, the reduction of s is the string obtained in
the following way: find the smallest number in the string and replace all occurrences
of that number with 1, then find the second smallest number in the string and replace
all occurrences of that number with 2, and so forth, replacing the occurrences of the
i th smallest number with the number i . For example, the reduction of 2671165 is
2451143. Now, given strings of numbers p = p1 · · · pn and q = q1 · · · qm , we say that
p contains q as a pattern if there exist indices 1 ≤ i1 < i2 < · · · < im ≤ n such that
pi1 · · · pim reduces to q. Otherwise, we say that p avoids q. For example, 2671165
contains the pattern 2321 because it contains the subsequence 6765, which reduces to
2321. However, 2671165 avoids the pattern 1234 because it has no strictly increasing
subsequence of length 4.

Finally, we expand on our permutation set notation. Let S(2)
n (Q) denote the set of

permutations of S(2)
n avoiding all patterns in the list Q. For example

S(2)

2 (112) = {1221, 2121, 2211}
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and

S(2)

2 (132, 231, 2134) = {1122, 1212, 1221, 2112, 2121, 2211}.
The first of these equalities can be checked by looking at all 6 members of S(2)

2 and
noting which do not contain a 112 pattern. The second is equal to the set S(2)

2 because
permutations with only the digits 1 and 2 cannot contain a pattern with 3 or 4 distinct
digits. A more interesting example is that

S(2)

3 (132, 231, 2134) = {112233, 121233, 122133, 211233, 212133, 221133,

311223, 312123, 312213, 321123, 321213, 322113,

331122, 331212, 331221, 332112, 332121, 332211}.
From our examples,

∣∣S(2)

2 (132, 231, 2134)
∣∣ = 6 and

∣∣S(2)

3 (132, 231, 2134)
∣∣ = 18.

These are precisely the surface areas of the Harrises’ first and second solids. This is
the coincidence that we explain in the remainder of this note.

The author’s website contains data about S(2)
n (Q) for many different lists of per-

mutations Q. It turns out the Harrises’ sequence corresponds to
∣∣S(2)

n (132, 231, 2134)
∣∣

for n = 2, 3, 4, . . . . Notice that this sequence begins with n = 2 instead of n = 1;
that is, the Harrises’ nth solid is related to the set S(2)

n+1(132, 231, 2134). In the follow-
ing sections we will provide a bijection between the faces of the Harrises’ nth solid
and the members of this set of permutations to show that

∣∣S(2)

n+1(132, 231, 2134)
∣∣ =

2n2 + 6n − 2, but first we need a lemma.

A permutation lemma The lemma presented here is a special case of a result of
Burstein [3].

LEMMA 1.
∣∣S(2)

n (132, 231, 213)
∣∣ = 2n + 2 for n ≥ 2.

Proof. Since we will only consider permutations that avoid the set of patterns
{132, 231, 213} in this proof, we will write An instead of S(2)

n (132, 231, 213).
First consider the case of n = 2. Because no string of 1’s and 2’s can contain a

pattern in {123, 231, 213}, we have that A2 = {1122, 1212, 1221, 2112, 2121, 2211},
and |A2| = 6, which is equal to 2n + 2 as desired.

We proceed by induction. Consider p ∈ An . Let p′ be the multiset permutation
formed by deleting the two copies of n in p. For example if p = 312123, then p′ =
1212. Notice that since p ∈ An, we have that p′ ∈ An−1.

Now, given p′ ∈ An−1, we consider all the ways to insert two copies of n into p′ to
obtain a multiset permutation in An. Notice that if n is inserted between two letters of
p′, we have necessarily created either a 132 pattern or a 231 pattern. Thus, the n’s can
be inserted in one of only 3 ways: (i) both n’s are prepended to the beginning of p′, (ii)
both n’s are appended to the end of p′, or (iii) one n is prepended to the beginning of p′
and the other n is appended to the end of p′. Clearly, (i) always produces a member of
S(2)

n , however, (ii) and (iii) must be considered more carefully. In particular, appending
an n to the end of p′ only produces a 213-avoiding multiset permutation if p′ avoids
the pattern 21, i.e. if p′ is weakly increasing. Thus, |An| = |An−1| + 2, since we may
prepend two n’s to the beginning of any member of An−1, but we may also append two
n’s to the end of the unique increasing permutation of An−1, or we may prepend an n
to the beginning of it and append an n to the end of it.

Finally, since |An| − |An−1| = 2, we know that |An| grows linearly, and use the fact
that A2 = 6 to compute the formula |An| = 2n + 2.

This lemma is key to our main theorem, which is given at the end of the next section.



300 MATHEMATICS MAGAZINE

The bijection We now give a bijection between the faces of the nth solid of the
Harrises’ construction and the multiset permutations of S(2)

n+1(132, 231, 2134). While
we could count the permutations of S(2)

n+1(132, 231, 2134) directly, a bijection not only
will show that the two quantities in question are equal, but a bijection will also illumi-
nate some parallels between the cube construction and the structure of the members of
S(2)

n+1(132, 231, 2134). To find such a bijection, it suffices to associate each permuta-
tion in S(2)

n+1(132, 231, 2134) with a unique unit square on the surface of the Harrises’
nth solid.

To this end, we consider another description of the Harrises’ construction. To con-
struct the nth solid from the (n − 1)st solid, we first remove the bottom face of the
solid and move it one unit lower as in FIGURE 2 (i). Next, we form a rectangular ring
of 4n squares. This ring should be constructed so that it has two opposing sides of
length 1 and two opposing sides of length 2n − 1, as shown in FIGURE 2 (ii). Now,
attach a new square to the top and bottom of each end of the ring, as shown in FIGURE

2 (iii), for a total of 4n + 4 new squares. We may glue the modified version of the
(n − 1)st solid together with this new modified ring of 4n + 4 squares to form the nth
solid. Two views of this gluing are shown in FIGURE 2 (iv).

(i) (ii) (iii)

(iv)

Figure 2 Constructing the n = 3 solid from the n = 2 solid

This alternate construction has a clear advantage. Although it is more complicated
to explain, this revised description allows us to associate each square on the surface
of the (n − 1)st solid with squares on the nth solid, rather than “gluing” some squares
into the interior.

The permutations of S(2)

n+1(132, 231, 2134) also have a nice recursive structure.
Given p′ ∈ S(2)

n (132, 231, 2134), there are three ways to insert two copies of (n + 1)

into p′ to obtain a multiset permutation in S(2)

n+1(132, 231, 2134): (i) both (n + 1)’s
are prepended to the beginning of p′, (ii) both (n + 1)’s are appended to the end of
p′, or (iii) one (n + 1) is prepended to the beginning of p′ and the other (n + 1) is
appended to the end of p′. As with the permutations of Lemma 1, (i) always produces
a member of S(2)

n+1(132, 231, 2134), but (ii) and (iii) must be considered in more detail.
In particular, appending (n + 1) to the end of p′ may induce a copy of a forbidden
2134 pattern if p′ contains a 213 pattern.

Now, we may recursively define a bijection between the squares of the nth solid and
the permutations of S(2)

n+1(132, 231, 2134).
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To begin, since there are 6 elements of S(2)

2 (132, 231, 2134), and 6 faces in a unit
cube, we may assign each one of these permutations to a unique face of the cube.

Now, consider the nth solid, constructed as described in this section. In the
(n − 1)st solid, each of the light gray squares was associated with some permu-
tation p ∈ S(2)

n (132, 231, 2134). Let each such square now be associated with the
permutation (n + 1)(n + 1)p ∈ S(2)

n+1(132, 231, 2134).
We must now account for the four dark gray squares (the tops and bottoms of the left

and right cubes in the bottom row of the solid) and the 4n medium gray squares (the
side faces of all cubes in the bottom row of the solid). Clearly, these must correspond
to the permutations of S(2)

n+1(132, 231, 2134) that either begin and end with (n + 1)

or that end with two copies of (n + 1). Notice that each of these permutations was
formed by taking one of the 2n + 2 permutations in S(2)

n (132, 231, 213) and inserting
two (n + 1)’s in one of the two ways just described. Thus the 4n + 4 permutations
of the form p(n + 1)(n + 1) or (n + 1)p(n + 1) where p ∈ S(2)

n (132, 231, 213) are
precisely the members of S(2)

n+1(132, 231, 213) that correspond to the 4n + 4 dark gray
and medium gray squares. We now have established a recursive bijection between the
exterior faces of the Harrises’ piles of cubes and the members of S(2)

n+1(132, 231, 2134).
This correspondence gives a combinatorial proof of the following theorem, which was
first observed using the method of enumeration schemes found in [6].

THEOREM 1.
∣∣S(2)

n+1(132, 231, 2134)
∣∣ = 2n2 + 6n − 2 for n ≥ 1.

For further reading In this paper we found a bijection between the squares on the
faces of the Harrises’ nth construction, and certain pattern-avoiding permutations. This
bijection illustrates the nice and unexpected connection between a question of middle-
school geometry and enumerative combinatorics.

Interested readers may wish to learn more about other enumeration problems related
to this paper. Permutations which avoid other permutations have been actively studied
since the seminal paper of Simion and Schmidt [7]. Applications have been made in
other areas of combinatorics. A friendly introduction to permutation patterns can be
found in [2]. The permutations in this paper, with precisely two copies of each letter,
are a special case of multiset permutations in which there may be an arbitrary numbers
of copies of each letter. More detailed work with pattern avoidance involving multiset
permutations can be found in [1], [3], [5], and [6].

The bijection demonstrated in this paper illustrates one of several connections be-
tween the Harrises’ cube constructions and pattern-avoiding permutations. To see an-
other bijection that relies on different geometric and combinatorial properties, visit the
author’s website at http://faculty.valpo.edu/lpudwell/papers.html.
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After Cantor [3, p. 107] (cf. also [2]), the standard method of enumerating the set
Z+ × Z+ of ordered pairs of positive integers is to list the entries by traversing succes-
sive diagonals, beginning with (1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), and so on. An
explicit bijection that accomplishes this is ϕ : Z+ × Z+ → Z+ defined by

ϕ(m, n) = m + (m + n − 1)(m + n − 2)

2
.

Providing an algebraic proof that ϕ is indeed a bijection is an instructive exercise.
By exploiting the multiplicative structure of the codomain, we can construct a map

ψ : Z+ × Z+ → Z+ which is immediately recognized as a bijection. (No need to re-
sort to algebraic calculation or a pictorial argument with diagonals.) For each pair of
positive integers m and n, let ψ(m, n) = 2m−1(2n − 1). Bijectivity of ψ is equivalent
to the fact that every positive integer has a unique representation as the product of an
odd positive integer and a non-negative integer power of 2. As one referee noted, this
fact is also key to Glaisher’s bijection between partitions of a positive integer into odd
parts and partitions with distinct parts [1, Ex. 2.2.6; 4, p. 12].
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PROPOSALS

To be considered for publication, solutions should be received by March 1, 2011.

1851. Proposed by Éric Pité, Paris, France.

Let a be an arbitrary integer. Consider the recursive sequence of integers defined by
u0 = 4, u1 = 0, u2 = 2, u3 = 3, and un+4 = un+2 + un+1 + a · un for every integer
n ≥ 0. Prove that p divides u p for every prime p.

1852. Proposed by Radu Gologan, Institute of Mathematics “Simion Stoilow” of the
Romanian Academy, Bucharest, Romania; and Cezar Lupu (student), University of
Bucharest, Bucharest, Romania.

Let f : [0, 1] → R be a differentiable function with a continuous derivative such that
f (0) = f (1) = − 1

6 . Prove that

∫ 1

0
( f ′(x))2 dx ≥ 2

∫ 1

0
f (x) dx + 1

4
.

1853. Proposed by Michael W. Botsko, Saint Vincent College, Latrobe, PA.

A function f is continuous nearly everywhere if it is continuous on its domain except
for a countable set. Let f : R → R be a real-valued function.

(a) Prove that if f is continuous nearly everywhere, then for every open set G ⊆ R

there are an open set O and a countable set C such that f −1(G) = O ∪ C .
(b) Is the converse of part (a) true? Prove or disprove.

Math. Mag. 83 (2010) 303–310. doi:10.4169/002557010X521877. c© Mathematical Association of America
We invite readers to submit problems believed to be new and appealing to students and teachers of advanced

undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any bibliographical
information that will assist the editors and referees. A problem submitted as a Quickie should have an unexpected,
succinct solution. Submitted problems should not be under consideration for publication elsewhere.

Solutions should be written in a style appropriate for this MAGAZINE.
Solutions and new proposals should be mailed to Bernardo M. Ábrego, Problems Editor, Department of
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electronically (ideally as a LATEX or pdf file) to mathmagproblems@csun.edu. All communications, written or
electronic, should include on each page the reader’s name, full address, and an e-mail address and/or FAX
number.
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1854. Proposed by Marian Tetiva, National College “Gheorghe Roşca Codreanu”,
Bârlad, Romania.

Let n and d be nonnegative integers. Find the number of all subsets of {1, 2, . . . , n}
which do not contain two numbers whose difference is d. (Subsets with at most one
element satisfy the condition by vacuity.)

1855. Proposed by Michael Goldenberg and Mark Kaplan, The Ingenuity Project,
Baltimore Polytechnic Institute, Baltimore, MD.

Prove that the Euler line of a triangle is perpendicular to one of the medians, if and
only if, the Brocard line is perpendicular to the symmedian line from the same vertex
as the median.

(The Brocard line passes through the circumcenter and the symmedian point of a
triangle. The symmedian point is the point of concurrency of the symmedians and a
symmedian through a vertex is the line symmetric to the median with respect to the
angle bisector from the same vertex.)

Quickies

Answers to the Quickies are on page 310.

Q1003. Proposed by Rick Mabry, Louisiana State University in Shreveport, Shreve-
port, LA.

What are the zeros of the nth derivative of f (x) = x2ex ?

Q1004. Proposed by Daniel Edelman (student), Mason–Rice Elementary School,
Newton Centre, MA; and Alan Edelman, MIT, Cambridge, MA.

If we concatenate (run together) a finite sequence of nonzero numbers in base 10, can
this number equal the product? For example, given 6, 54, and 321, we are comparing
654 321 with 6 · 54 · 321 = 104 004 which is less than 654 321.

Solutions

Counting block fountains of coins October 2009

1826. Proposed by Michael Woltermann, Washington & Jefferson College, Washing-
ton, PA.

A block fountain of coins is an arrangement of identical coins in rows such that the
coins in the first row form a contiguous block, each row above that forms a contiguous
block, and each coin in a higher row is supported by two adjacent coins in the row
below. As an example,

If an denotes the number of block fountains with exactly n coins in the base, then an =
F2n−1, where Fk denotes the kth Fibonacci number. (Wilf, generatingfunctionology,
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1994.) How many block fountains are there if two fountains that are mirror images of
each other are considered to be the same? That is, if two fountains such as

are the same, while two fountains such as

are different?

Solution by Michael Cap Khoury, University of Michigan, Ann Arbor, MI.
For the purposes of this problem, index the Fibonacci sequence so that F1 = F2 =

1; this is the convention that makes an = F2n−1 as claimed in the problem statement.
We begin by counting those block fountains with exactly n coins in the base that

have mirror symmetry. Let Bn be the set of such fountains and bn = |Bn| . (Note that
by identifying a symmetric fountain with the length of its rows, bn is also the number
of decreasing sequences of positive integers that start with n and alternate in parity.)
We claim that bn = Fn+1. It is easy to see that b1 = 1 and b2 = 2. To prove the result
in general, note that the fountains in Bn are of two types: those that contain a row of
n − 1 coins directly above the base and those that do not. In the former case, remove
the base to obtain a fountain in Bn−1; in the latter case, remove one coin from each
side of the base to obtain a fountain in Bn−2. This gives a bijection between Bn and
Bn−1 ∪ Bn−2, so bn = bn−1 + bn−2, and our claim follows.

Now, when we identify a fountain with its mirror image, an double-counts the asym-
metric fountains but not the symmetric ones. So an + bn double-counts all fountains,
and the answer to our problem is (an + bn)/2 = (F2n−1 + Fn+1)/2. (Note that as a
consequence F2n−1 and Fn+1 have the same parity for all n.)

Also solved by Elizabeth Bentley and Todd Lee; Elton Bojaxhiu (Germany) and Enkel Hysnelaj (Australia);
Shane M. Bryan; Robert Calcaterra; Chip Curtis; Daniele Degiorgi (Switzerland); Emeric Deutsch; Sergio
Falcón (Spain), José M. Pacheco (Spain), and Ángel Plaza (Spain); David Getling (Germany); Ruth A. Koelle;
Kathleen E. Lewis; Jeff Lutgen; Joseph McKenna; Ray Rosentrater; Ossama A. Saleh and Terry J. Walters;
Nicholas C. Singer; Skidmore College Problem Group; John Sumner and Aida Kadic-Galeb; James Swenson;
Taylor Problem Solving Group; Yen Yanosko; and the proposer. There was one incorrect submission.

The row sum divides the determinant October 2009

1827. Proposed by Christopher Hilliar, Texas A & M University, College Station, TX.

Let A be an n × n matrix with integer entries and such that each column of A is a
permutation of the first column. Prove that if the entries in the first column do not sum
to 0, then this sum divides det(A).

Solution by Reiner Martin, Bad Soden-Neuenhain, Germany.
More generally, only assume that the integer entries of each row of A sum to the

same number s. Clearly, the n-vector of 1s is an eigenvector with eigenvalue s. Thus,
s is a zero of the integer characteristic polynomial p(x) = ∑n

i=0 ai xi of A. Conse-
quently,

a0 = s ·
(

−
n∑

i=1

ai s
i−1

)
,

so s divides a0 = det(A). Note that the condition s �= 0 is not needed.
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Editor’s Note. As was noted by Francisco Vial and Mark Ashbaugh this problem ap-
pears as Problem 7.2.9 in P. N. de Souza and J. Silva, Berkeley Problems in Mathemat-
ics, Springer, New York, 2004.

Also solved by Michael Andreoli; George Apostolopoulos (Greece); Armstrong Problem Solvers; Michel
Bataille (France); Jany C. Binz (Switzerland); Elton Bojaxhiu (Germany) and Enkel Hysnelaj (Australia); Shane
M. Bryan; Nicholas Buck (Canada); Robert Calcaterra; Minh Can; Hongwei Chen; John Christopher; Daniele
Degiorgi (Switzerland); “Fejéntaláltuka Szeged” problem solving group (Hungary); Rod Hardy, David McFar-
land, and Alin A. Stancu; Eugene A. Herman; Tom Hoffman; Bianca-Teodora Iordache (Romania); Michael
Cap Khoury; Ruth A. Koelle; Omran Kouba (Syria); Victor Y. Kutsenok; Elias Lampakis (Greece); Kathleen
E. Lewis; Kim McInturff; Missouri State University Problem Solving Group; Northwestern University Math
Problem Solving Group; Occidental College Problem Solving Group; Éric Pité (France); Ángel Plaza (Spain)
and José M. Pacheco (Spain); Gabriel Prǎjiturǎ; Henry Ricardo; Raúl A. Simón (Chile); Nicholas C. Singer;
John H. Smith; John Sumner and Aida Kadic-Galeb; Taylor Problem Solving Group; Marian Tetiva (Romania);
Francisco Vial (Chile); Michael Vowe (Switzerland); Stanley Y. Xiao (Canada); Ken Yanosko; John T. Zerger;
and the proposer. There were three incorrect submissions.

A Stirling product October 2009

1828. Proposed by Stephen J. Herschkorn, Department of Statistics, Rutgers Univer-
sity, New Brunswick, NJ.

Let α0 be the smallest value of α for which there exists a positive constant C such that

n∏
k=1

2k

2k − 1
≤ Cnα

for all positive integers n.

a. Find the value of α0.

b. Prove that the sequence
{

1

nα0

n∏
k=1

2k

2k − 1

}∞

n=1

is decreasing and find its limit.

Solution by Ossama A. Saleh and Stan Byrd, Department of Mathematics, University
of Tennessee at Chattanooga, Chattanooga, Tennessee.

Let pn = ∏n
k=1(2k)/(2k − 1), then after a straight forward calculation, we see that

pn = 22n(n!)2/(2n)!. We prove by induction that pn ≤ 2
√

n for n ≥ 1. For n = 1,
p1 = 2. Assume that pn ≤ 2

√
n. Then

pn+1 =
(

2(n + 1)

2n + 1

)
pn ≤ 4(n + 1)

√
n

2n + 1
= 4

√
n + 1

√
n(n + 1)

2n + 1
.

By the Arithmetic Mean–Geometric Mean Inequality,

√
n(n + 1) <

n + n + 1

2
= 2n + 1

2
,

so pn+1 ≤ 2
√

n + 1. Therefore α0 ≤ 1
2 with C = 2.

Next, we prove that if α < 1
2 , then there is no positive constant C such that

n∏
k=1

2k

2k − 1
≤ Cnα
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for all positive integers n. Assume the contrary, that is, for some α < 1
2 and some

positive constant C , pn ≤ Cnα for all positive integers n. We employ the well-known
Stirling’s Formula:

lim
n→∞

n!en

nn
√

2πn
= 1.

For n ≥ 1 let g(n) = n!en/nn
√

2πn. Therefore,

1 = lim
n→∞

(g(n))2

g(2n)
= lim

n→∞
22n(n!)2

(2n!)√πn
= lim

n→∞
pn√
πn

≤ lim
n→∞

C
√

πn
1
2 −α

= 0,

which is a contradiction. Therefore α0 = 1/2.
For part b, we define hn = n−α0 pn . Then, hn = 22n(n!)2/(2n)! √n and hence, for

n ≥ 1,

hn+1

hn
= 2

√
n(n + 1)

2n + 1
< 1,

once again by the Arithmetic Mean–Geometric Mean Inequality.
Therefore, the sequence {hn} is decreasing. Because hn = √

π(g(n))2/g(2n) and
limn→∞ (g(n))2/g(2n) = 1, it follows that limn→∞ hn = √

π . This completes the
proof.

Editor’s Note. Most of the solutions submitted used either Stirling’s Formula or Wallis
Formula. Michael Andreoli points out that essentially the same problem appears on
page 328 of M. Spivak, Calculus, W. A. Benjamin Inc., New York, 1967. Mark Ash-
baugh and Francisco Vial notice that the same problem can be seen in H. Hochstadt,
The Functions of Mathematical Physics, Dover, 1986 (originally published by Wiley in
1971). Moreover, they generalized in the following way; they asked to find the largest
real number β such that (1/

√
n + β)

∏n
k=1

2k
2k−1 is decreasing and they claimed that

β = 1
4 .

Also solved by Michael Andreoli, Mark Ashbaugh and Francisco Vial (Chile), Michel Bataille (France),
Paul Bracken, Bruce S. Burdick, Robert Calcaterra, Hongwei Chen, Daniele Degiorgi (Switzerland), Robert
L. Doucette, Dmitry Fleischman, Michael Goldenberg and Mark Kaplan, Eugene A. Herman, Enkel Hysnelaj
(Australia) and Elton Bojaxhiu (Germany), Bianca-Teodora Iordache (Romania), Michael Cap Khoury, Santiago
de Luxán (Spain) and Ángel Plaza (Spain), Occidental College Problem Solving Group, Paolo Perfetti (Italy),
Robert C. Rhoades, John M. Sayer, Joel Schlosberg, Nicholas C. Singer, John Sumner and Aida Kadic-Galeb,
Marian Tetiva (Romania), Michael Vowe (Switzerland), Stan Wagon, Haohao Wang and Jerzy Wojdyło, John
B. Zacharias, and the proposer. There were two incorrect submissions and one incomplete solution.

An inequality for the excircles of a triangle October 2009

1829. Proposed by Oleh Faynshteyn, Leipzig, Germany.

Let ABC be a triangle with BC = a, C A = b, and AB = c. Let ra denote the radius of
the excircle tangent to BC, rb the radius of the excircle tangent to CA, and rc the radius
of the excircle tangent to AB. Prove that

rarb

(a + b)2
+ rbrc

(b + c)2
+ rcra

(c + a)2
≤ 9

16
.
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I. Solution by Ercole Suppa, Teramo, Italy.
Let � = Area(ABC) and s = (a + b + c)/2. Taking into account the identities

ra = �/(s − a), rb = �/(s − b), rc = �/(s − c), as well as Heron’s formula � =√
s(s − a)(s − b)(s − c), the inequality in the problem becomes

s(s − c)

(a + b)2
+ s(s − a)

(b + c)2
+ s(s − b)

(c + a)2
≤ 9

16
⇔

(a + b)2 − c2

(a + b)2
+ (b + c)2 − a2

(b + c)2
+ (c + a)2 − b2

(c + a)2
≤ 9

4
⇔

a2

(b + c)2
+ b2

(a + c)2
+ c2

(a + b)2
≥ 3

4
. (1)

Now, by using Nesbitt’s inequality

a

b + c
+ b

a + c
+ c

a + b
≥ 3

2

and the well-known inequality 3
(
x2 + y2 + z2

) ≥ (x + y + z)2 we get

(
a

b + c

)2

+
(

b

c + a

)2

+
(

c

a + b

)2

≥ 1

3

(
a

b + c
+ b

a + c
+ c

a + b

)2

≥ 1

3

(
3

2

)2

= 3

4

and (1) is proved. The equality holds if and only if a = b = c.

II. Solution by Robert L. Doucette, Department of Mathematics, Computer Science
and Statistics, McNeese State University, Lake Charles, LA.

As in the first solution, the inequality to be proved is equivalent to

a2

(b + c)2
+ b2

(a + c)2
+ c2

(a + b)2
≥ 3

4
.

Letting f (x) := x2/(1 − x)2 for x ∈ (0, 1), this may be written as

1

3

(
f

(
a

a + b + c

)
+ f

(
b

a + b + c

)
+ f

(
c

a + b + c

))
≥ f

(
1

3

)
.

Since f ′′(x) = 2x/(1 − x)3 > 0 for x ∈ (0, 1), the function f is strictly convex on
the interval (0, 1). Our inequality follows from Jensen’s inequality. It also follows that
equality occurs if and only if �ABC is equilateral.

Editor’s Note. The statement of the problem was incorrectly published with the re-
versed inequality. We thank all the readers who noticed the mistake and still managed
to solve the correct problem.

Also solved by Arkady Alt, George Apostolopoulos (Greece), Herb Bailey, Michel Bataille (France), Robert
Calcaterra, Minh Can, Chip Curtis, Daniele Degiorgi (Switzerland), Marian Dinca (Romania), Sebastián Garcı́a
Saenz (Chile), John G. Heuver (Canada), Enkel Hysnelaj (Australia) and Elton Bojaxhiu (Germany), Bianca-
Teodora Iordache (Romania), Omran Kouba (Syria), Victor Y. Kutsenok, Elias Lampakis (Greece), Kee-Wai Lau
(China), Peter Nüesch (Switzerland), Jennifer Pajda, Ángel Plaza (Spain) and Sergio Falcón (Spain), Gabriel
Prǎjiturǎ, Fary Sami, Achilleas Sinefakopoulos (Greece), John Sumner and Aida Kadic-Galeb, Marian Tetiva
(Romania), Philip Todd, Michael Vowe (Switzerland), Haohao Wong and Jerzy Wojdyło, and the proposer. There
were two incorrect submissions.
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A rational quotient of floors of irrationals October 2009

1830. Proposed by H. A. ShahAli, Tehran, Iran.

Let α and β be positive real numbers and let r be a positive rational number. Find
necessary and sufficient conditions to ensure that there exist infinitely many positive
integers m such that

�mα�
�mβ� = r.

I. Solution by Omran Kouba, Higher Institute for Applied Sciences ad Technology,
Damascus, Syria.

The desired condition is α = rβ. Denote by {x} the fractional part of x . Note that

m(α − rβ) = �mα� − r�mβ� + {mα} − r{mβ},
so if �mα� = r�mβ�, then

m|α − rβ| = |{mα} − r{mβ}| ≤ 1 + r.

Hence, if we suppose that there exists a sequence (mk)k≥1 of positive integers satisfying
limk→∞ mk = ∞ and �mkα� = r�mkβ�, then for every k ≥ 1, |α − rβ| ≤ (1 + r)/mk .
Letting k tend to infinity we conclude that α = rβ is a necessary condition.

Conversely, let us suppose that α = rβ. By hypothesis r = p/q for some positive
integers p and q. If � > 1/β is a positive integer satisfying {�β} < 1/(p + q), then
from �β = ��β� + {�β} we conclude that p�β = p��β� + p{�β}, q�β = q��β� +
q{�β}, and 0 ≤ p{�β}, q{�β} < 1. Hence �p�β� = p��β� and �q�β� = q��β�. Fi-
nally, if m = q�, then

�mα�
�mβ� = �q�α�

�q�β� = �p�β�
�q�β� = p

q
= r.

Thus the result would follow if we prove that the set of positive integers � satisfying
{�β} < 1/(p + q) is infinite. This is true if β is rational by taking multiples of the de-
nominator of β. If β is irrational, then by Kronecker’s Theorem the set {{�β} : � > 1}
is dense in the interval [0, 1] and consequently infinitely many of its members belong
to the interval [0, 1/(p + q)). This achieves the proof of sufficiency.

II. Solution by Nicholas C. Singer, Annandale, VA.
The necessity is obtained as in the last solution. For the sufficiency suppose α/β =

r . Then α and β are rational or irrational together. If they are rational, say β = t/u
for positive integers t and u, then quα = quβr = puβ = pt is an integer. Thus for all
positive integers k,

�kquα�
�kquβ� = kquα

kquβ
= kpt

kqt
= r.

If α and β are irrational, use continued fractions to obtain strictly increasing sequences
of positive integers (k j ) and (m j ) such that

k j

m j
<

α

p
= β

q
<

k j

m j
+ 1

m2
j

.
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Then pk j < m jα < pk j + p/m j and qk j < m jβ < qk j + q/m j . As soon as j is large
enough such that m j > max {p, q}, we have

⌊
m jα

⌋ = pk j and
⌊

m jβ
⌋ = qk j . Thus

⌊
m jα

⌋
⌊

m jβ
⌋ = pk j

qk j
= r.

Also solved by George Apostolopoulos (Greece), Michel Bataille (France), Elton Bojaxhiu (Germany) and
Enkel Hysnelaj (Australia), Robert Calcaterra, John Christopher, Andrés Fielbaum (Chile), Dmitry Fleischman,
Bianca-Teodora Iordache (Romania), Michael Cap Khoury, Northwestern University Math Problem Solving
Group, Occidental College Problem Solving Group, Brad Pearson, John Sumner and Aida Kadic-Galeb, Marian
Tetiva (Romania), and the proposer.

Answers

Solutions to the Quickies from page 304.

A1003. It is clear that f (n)(x) = (an x2 + bn x + cn)ex for constants an , bn , and cn .
Differentiating once gives the following simple recursive formulas: (a0, b0, c0) =
(1, 0, 0), and (an+1, bn+1, cn+1) = (an, 2an + bn, cn + bn). Thus an = 1 for all n,
bn = 2n for all n, and c j − c j−1 = 2( j − 1) for all j ≥ 1. Summing the last equal-
ity over 1 ≤ j ≤ n gives cn = n(n − 1). Thus f (n)(x) = (x2 + 2nx + n(n − 1))ex ,
whose zeros are −n ± √

n.

A1004. The concatenation is never equal to the product. The concatenation is larger
than the product of the first number and every other number rounded up to the next
power of 10. This is in turn larger than the product itself. (Example: 54 and 321 round
up to 100 and 1 000. Therefore, 654 321 > 600 000 = 6 · 100 · 1000 > 6 · 54 · 321.)
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Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles, books, and other materials are
selected for this section to call attention to interesting mathematical exposition that occurs out-
side the mainstream of mathematics literature. Readers are invited to suggest items for review
to the editors.

Deolalikar, Vinay, P �= NP: Synopsis of proof, http://www.hpl.hp.com/personal/Vinay_
Deolalikar/Papers/pnp_synopsis.pdf.

Lipton, R. J., Gödel’s lost letter and P = NP, blog at http://rjlipton.wordpress.com/.

AN HP researcher has circulated a 120+-page paper claiming to resolve the most famous prob-
lem in theoretical computer science by establishing that P �= NP, that is, that the complexity
class NP of problems is strictly larger than the class P. The class P (“polynomial time”) is
composed of problems for which a problem of size n has solutions whose algorithmic cost is
bounded by a polynomial in n; such problems are considered “easy,” and examples include
primality testing. The class NP (“nondeterministic polynomial time”) consists of problems for
which a solution can be verified in polynomial time, but for which finding a solution in may take
exponential time. Examples include factoring integers and the traveling sales problem. The Clay
Mathematics Institute offers a $1 million prize for resolving the question of whether P = NP.
As of this writing, Deolalikar’s paper has not yet been refereed, verified, or refuted. The site by
Lipton (and his associated blog) contains links to further developments.

Origami crease pattern design proved NP-hard, http://www.technologyreview.com/blog/
arxiv/25591/.

Demaine, Erik D., Sandor P. Fekete, and Robert J. Lang, Circle packing for origami design is
hard, http://arxiv.org/abs/1008.1224.

A problem is NP-hard if it is at least as “hard” as the hardest problem in NP, meaning that the
latter can be reduced to the former by a polynomial-time algorithm. If P �= NP, then there is
no polynomial-time solution to any NP-hard problem. The traveling sales problem is NP-hard,
and the paper by Demaine et al. establishes that determining a crease pattern to fold a square of
paper into a three-dimensional shape is NP-hard. They prove that fact by reducing the origami
problem into a circle-packing problem known to be NP-hard.

Davidson, Morley, John Dethridge, Herbert Kociemba, and Tomas Rokicki, God’s number is
20, http://www.cube20.org.

The authors establish that every position of Rubik’s Cube can be solved in 20 moves or fewer.
Using 35 CPU-years of computer time, Davidson et al. analyzed every position of the puzzle. A
position that requires 20 moves has been known since 1995 (they suggest that there are probably
at least 100 million of them!), and the upper bound has slowly drifted down from 52 in 1981 to
the now-established 20. The authors broke the positions down into sets of positions via cosets
and solved each set in about 20 seconds on a PC. They did not find an optimal solution for
every position, just one in 20 moves or fewer. Meanwhile, contestants commonly solve Cube
positions blindfolded (after visually examining the cube) in under 10 seconds.

Math. Mag. 83 (2010) 311–312. doi:10.4169/002557010X521886. c© Mathematical Association of America
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Gallian, Joseph A. (ed.), Mathematics and Sports, MAA, 2010; xi + 329 pp, $39.95(P) (member
price: $29.95). ISBN 978-0-88385-349-8.

This book contains 25 all-new essays, solicited for the 2010 Mathematics Awareness Month.
There are several each on baseball, basketball, football, golf, and track and field, and one or two
each on NASCAR, tournament scheduling, soccer, and tennis. The mathematics used ranges
from probability (including cumulative distribution functions and moments), hypothesis testing,
recursion, matrix multiplication, ballistics, combinatorics, to graph theory—with only two or
three passing uses of calculus. I found most interesting “Down by 4 with a minute to go,” by
G. Edgar Parker, about last-minute strategy in basketball, and (after watching Tiger Woods miss
many putts the day before) “Tigermetrics,” by Roland Minton, which notes that at more than
8 ft, pros make less than half their putts.

Epstein, Richard A., The Theory of Gambling and Statistical Logic, 2nd ed., Academic Press,
2009; xiii + 442 pp, $42.95. ISBN 978-0-12-374940-6.

This new edition of a 1967 classic (revised in 1995) gives a wealth of information about stra-
tegies in a diverse collection of games of chance and strategy, together with preliminaries about
probability, statistics, game theory, and gambling in general. Much of this distilled information
cannot be found conveniently elsewhere. This is not a book for a general audience; summa-
tion signs, random variables, and exponentials appear early and often. New in this edition is a
chapter on Parrondo’s paradox (that alternating between two losing games can produce positive
expectation). The chapter on betting systems does not consider a house limit on bets, and not
all criticisms by reviewers of previous editions have been addressed. [Mathematical variables
are rendered inconsistently in math italic or roman, the index didn’t help me find what I sought
(e.g., double factorial), and there are a few misprints: p. 58, Thm. IV, line 4, α should be a;
p. 323, last line should be American Mathematical Monthly 107.]

Stewart, Ian, Cows in the Maze and Other Mathematical Explorations, Oxford University Press,
2010; xi + 296 pp, $17.95(P). ISBN 978-0-19-956207-7.

This is the third collection of Ian Stewart’s Mathematical Recreations columns (with the addi-
tion of feedback from readers) from Scientific American and Pour la Science. The 20 columns
feature mainly geometry: opaque fences, quadruped locomotion, knotted tiles, wormholes,
sphericons, teardrop shapes, knight’s tours, string figures, Klein bottles, knot energies, do-
decahedra, and the fiendish maze of the title. There are also non-transitive dice, Hex, primes
in progression, the interrogator’s fallacy, magic squares, and more. There are (almost) no
equations except in the column on probability in jurisprudence.

Ehrenberg, Rachel, Elusive symmetry appears in nature: Complex E8 patterns detected in super-
cold physical system, Science News (30 January 2010) 15.

The exceptional Lie group E8, whose admissible representations were computed in 2007 (http:
//aimath.org/E8/), has been found to occur in nature. When cobalt niobate is chilled toward
absolute zero in a magnetic field, the electron spins form quasiparticles that resonate. “Two
of the frequencies are in the ratio of the golden mean. . . . Ratios of the five frequences found
correspond to the complex E8 Lie group symmetry.”

Nickerson, Raymond S., Mathematical Reasoning: Patterns, Problems, Conjecture, and Proofs,
Psychology Press, 2010; xi + 583 pp, $69.95. ISBN 978-1-84872-837-1.

Few authors who are not mathematicians have the understanding and sympathy for the subject
and its practitioners that is shown in this book, whose author is an experimental psychologist
and former VP of Bolt Beranek and Newman Inc. He surveys the nature, joys, usefulness, foun-
dations, and teaching of mathematics, in its manifestations of pattern-finding, problem-solving,
conjecture-making, and proof-devising. He concludes, “the supreme reason for acquiring some
competence in mathematics is the door it opens to an immensely attractive and rewarding
workspace—or playground—for the mind.” This is a great book for nonmathematicians, one
that a mathematician can praise.
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In 2010 the Committee on the American Mathematics Competitions introduced the USA
Junior Mathematical Olympiad (USAJMO) for students in 10th grade and below. Offered
for the first time in April 2010, the USAJMO bridges the computational solutions of the
AIME and the proofs required on the USAMO.

The USAJMO sets 6 problems over 2 days, the same as the USAMO. Problems J1, J2
on Day 1, and Problems J4, J5 do not appear on the USAMO. Problem J3 is the same as
Problem 1 on the USAMO, Problem J6 is the same as Problem 4 on the USAMO.

USAMO Problems

1. Let AXYZB be a convex pentagon inscribed in a semicircle of diameter AB. Denote by
P, Q, R, S the feet of the perpendiculars from Y onto lines AX, BX, AZ, BZ, respec-
tively. Prove that the acute angle formed by lines PQ and RS is half the size of � XOZ,
where O is the midpoint of segment AB.

2. There are n students standing in a circle, one behind the other. The students have heights
h1 < h2 < · · · < hn . If a student with height hk is standing directly behind a student
with height hk−2 or less, the two students are permitted to switch places. Prove that it is
not possible to make more than

(n
3

)
such switches before reaching a position in which

no further switches are possible.

3. The 2010 positive numbers a1, a2, . . . , a2010 satisfy the inequality ai a j ≤ i + j for all
distinct indices i, j . Determine, with proof, the largest possible value of the product
a1a2 · · · a2010.

4. Let ABC be a triangle with � A = 90◦. Points D and E lie on sides AC and AB, respec-
tively, such that � ABD = � DBC and � ACE = � ECB. Segments BD and CE meet at I .
Determine whether or not it is possible for segments AB, AC, BI, ID, CI, IE to all have
integer lengths.

5. Let q = 3p−5
2 where p is an odd prime, and let

Sq = 1

2 · 3 · 4
+ 1

5 · 6 · 7
+ · · · + 1

q(q + 1)(q + 2)
.

Prove that if 1
p − 2Sq = m

n for integers m and n, then m − n is divisible by p.

Math. Mag. 83 (2010) 313–319. doi:10.4169/002557010X521895. c© Mathematical Association of America
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6. A blackboard contains 68 pairs of nonzero integers. Suppose that for each positive in-
teger k at most one of the pairs (k, k) and (−k,−k) is written on the blackboard. A
student erases some of the 136 integers, subject to the condition that no two erased in-
tegers may add to 0. The student then scores one point for each of the 68 pairs in which
at least one integer is erased. Determine, with proof, the largest number N of points that
the student can guarantee to score regardless of which 68 pairs have been written on the
board.

USAMO Solutions

1. Let T be the foot of the perpendicular from Y to line AB. We note the P, Q, T are
the feet of the perpendiculars from Y to the sides of triangle ABX. Because Y lies on
the circumcircle of triangle ABX, points P, Q, T are collinear, by Simson’s theorem.
Likewise, points S, R, T are collinear. We need to show that � XOZ = 2 � PTS or

� PTS = � XOZ

2
=

�

XZ

2
=

�

XY

2
+

�

YZ

2

= � XAY + � ZBY = � PAY + � SBY.

Because � PTS = � PTY + � STY , it suffices to prove that

� PTY = � PAY and � STY = � SBY;
that is, to show that quadrilaterals APYT and BSYT are cyclic, which is evident, because
� APY = � ATY = 90◦ and � BTY = � BSY = 90◦.

Titu Andreescu suggested this problem.

2. Let hi also denote the student with height hi . We prove that for 1 ≤ i < j ≤ n, h j can
switch with hi at most j − i − 1 times. We proceed by induction on j − i , the base case
j − i = 1 being evident because hi is not allowed to switch with hi−1.

For the inductive step, note that hi , h j−1, h j can be positioned on the circle either in
this order or in the order hi , h j , h j−1. Since h j−1 and h j cannot switch, the only way
to change the relative order of these three students is for hi to switch with either h j−1
or h j . Consequently, any two switches of hi with h j must be separated by a switch of
hi with h j−1. Since there are at most j − i − 2 of the latter, there are at most j − i − 1
of the former.

The total number of switches is thus at most

n−1∑
i=1

n∑
j=i+1

( j − i − 1) =
n−1∑
i=1

n−i−1∑
j=0

j =
n−1∑
i=1

(
n − i

2

)

=
n−1∑
i=1

((
n − i + 1

3

)
−

(
n − i

3

))
=

(
n

3

)
.

Kiran Kedlaya suggested this problem.

3. Multiplying together the inequalities a2i−1a2i ≤ 4i − 1 for i = 1, 2, . . . , 1005, we get

a1a2 · · · a2010 ≤ 3 · 7 · 11 · · · 4019. (1)

The tricky part is to show that this bound can be attained.
Let

a2008 =
√

4017 · 4018

4019
, a2009 =

√
4019 · 4017

4018
, a2010 =

√
4018 · 4019

4017
,
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and define ai for i < 2008 by downward induction using the recursion ai =
(2i + 1)/ai+1. We then have

ai a j = i + j whenever j = i + 1 or i = 2008, j = 2010. (2)

We will show that (2) implies ai a j ≤ i + j for all i < j , so that this sequence satis-
fies the hypotheses of the problem. Since a2i−1a2i = 4i − 1 for i = 1, . . . , 1005, the
inequality (1) is an equality, so the bound is attained.

We show that ai a j ≤ i + j for i < j by downward induction on i + j . There are
several cases:

• If j = i + 1, or i = 2008, j = 2010, then ai a j = i + j , from (2).
• If i = 2007, j = 2009, then

ai ai+2 = (ai ai+1)(ai+2ai+3)

(ai+1ai+3)
= (2i + 1)(2i + 5)

2i + 4
< 2i + 2.

Here the second equality comes from (2), and the inequality is checked
by multiplying out: (2i + 1)(2i + 5) = 4i2 + 12i + 5 < 4i2 + 12i + 8 =
(2i + 2)(2i + 4).

• If i < 2007 and j = i + 2, then we have

ai ai+2 = (ai ai+1)(ai+2ai+3)(ai+2ai+4)

(ai+1ai+2)(ai+3ai+4)
≤ (2i + 1)(2i + 5)(2i + 6)

(2i + 3)(2i + 7)
< 2i + 2.

The first inequality holds by applying the induction hypothesis for (i + 2, i + 4),
and (2) for the other pairs. The second inequality can again be checked by mul-
tiplying out: (2i + 1)(2i + 5)(2i + 6) = 8i3 + 48i2 + 82i + 30 < 8i3 + 48i2 +
82i + 42 = (2i + 2)(2i + 3)(2i + 7).

• If j − i > 2, then

ai a j = (ai ai+1)(ai+2a j )

ai+1ai+2
≤ (2i + 1)(i + 2 + j)

2i + 3
< i + j.

Here we have used the induction hypothesis for (i + 2, j), and again we check the
last inequality by multiplying out: (2i + 1)(i + 2 + j) = 2i2 + 5i + 2 + 2i j +
j < 2i2 + 3i + 2i j + 3 j = (2i + 3)(i + j).

This covers all the cases and shows that ai a j ≤ i + j for all i < j , as required.
Gabriel Carroll suggested this problem.

4. Let BD = m, AD = x , DC = y, AB = c, BC = a, and AC = b. The Bisector Theorem
implies x

b−x = c
a and the Pythagorean Theorem yields m2 = x2 + c2. Both equations

imply that

2ac = (bc)2

m2 − c2
− a2 − c2

and therefore a is rational. Therefore, x = bc
a+c is also rational, and so is y. Let now

� ABD = α and � ACE = β where α + β = π/4. It is obvious that cos α and cos β are
both rational and the above shows that sin α = x/m is rational. On the other hand,
cos β = cos(π/4 − α) = (

√
2/2)(sin α + sin β), which is a contradiction. The solution

shows that a stronger statement is true: There is no right triangle with both legs and
bisectors of acute angles all with integer lengths.

Zuming Feng suggested this problem. Jacek Fabrykowski suggested the given
solution.
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5. We have

2

k(k + 1)(k + 2)
= 1

k
+ 1

k + 1
+ 1

k + 2
− 3

k + 1
.

Hence

2Sq =
(

1

2
+ 1

3
+ 1

4
+ · · · + 1

q
+ 1

q + 1
+ 1

q + 2

)
− 3

(
1

3
+ 1

6
+ · · · + 1

q + 1

)

=
(

1

2
+ 1

3
+ · · · + 1

3p−1
2

)
−

(
1 + 1

2
+ · · · + 1

p−1
2

)
,

and so

1 − m

n
= 1 + 2Sq − 1

p
= 1

p+1
2

+ · · · + 1

p − 1
+ 1

p + 1
+ · · · + 1

3p−1
2

=
(

1
p+1

2

+ 1
3p−1

2

)
+ · · · +

(
1

p − 1
+ 1

p + 1

)

= p(
p+1

2

) (
3p−1

2

) + · · · + p

(p − 1)(p + 1)
.

Because all denominators are relatively prime with p, it follows that n − m is divisible
by p and we are done.

Titu Andreescu suggested this problem.

6. The answer is 43.
We first show that we can always get 43 points. Without loss of generality, we as-

sume that the value of x is positive for every pair of the form (x, x) (otherwise, replace
every occurrence of x on the blackboard by −x , and every occurrence of −x by x). Con-
sider the ordered n-tuple (a1, a2, . . . , an) where a1, |a2|, . . . , an denote all the distinct
absolute values of the integers written on the board.

Let φ =
√

5−1
2 , which is the positive root of φ2 + φ = 1. We consider 2n pos-

sible underlining strategies: Every strategy corresponds to an ordered n-tuple s =
(s1, . . . , sn) with si = φ or si = 1 − φ (1 ≤ i ≤ n). If si = φ, then we underline
all occurrences of ai on the blackboard. If si = 1 − φ, then we underline all occur-
rences of −ai on the blackboard. The weight w(s) of strategy s equals the product∏n

i=1 si . It is easy to see that the sum of weights of all 2n strategies is equal to∑
s w(s) = ∏n

i=1[φ + (1 − φ)] = 1.
For every pair p on the blackboard and every strategy s, we define a corresponding

cost coefficient c(p, s): If s scores a point on p, then c(p, s) equals the weight w(s).
If s does not score on p, then c(p, s) equals 0. Let c(p) denote the sum of coefficients
c(p, s) taken over all s. Now consider a fixed pair p = (x, y):

(a) In this case, we assume that x = y = a j . Then every strategy that underlines a j

scores a point on this pair. Then c(p) = φ
∏n

i �= j [φ + (1 − φ)] = φ.

(b) In this case, we assume that x �= y. We have

c(p) =
⎧⎨
⎩

φ2 + φ(1 − φ) + (1 − φ)φ = 3φ − 1, (x, y) = (ak , a�);
φ(1 − φ) + (1 − φ)φ + (1 − φ)2 = φ, (x, y) = (−ak ,−a�);
φ2 + φ(1 − φ) + (1 − φ)2 = 2 − 2φ, (x, y) = (±ak ,∓a�).

By noting that φ ≈ 0.618, we can easily conclude that c(p) ≥ φ.
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We let C denote the sum of the coefficients c(p, s) taken over all p and s. These obser-
vations yield that

C =
∑
p,s

c(p, s) =
∑

p

c(p) ≥
∑

p

φ = 68φ > 42.

Suppose for the sake of contradiction that every strategy s scores at most 42 points.
Then every s contributes at most 42w(s) to C , and we get C ≤ 42

∑
s w(s) = 42, which

contradicts C > 42.
To complete our proof, we now show that we cannot always get 44 points. Consider

the blackboard contains the following 68 pairs: for each of m = 1, . . . , 8, five pairs
of (m, m) (for a total of 40 pairs of type (a)); for every 1 ≤ m < n ≤ 8, one pair of
(−m,−n) (for a total of

(8
2

) = 28 pairs of type (b)). We claim that we cannot get 44
points from this initial stage. Indeed, assume that exactly k of the integers 1, 2, . . . , 8
are underlined. Then we get at most 5k points on the pairs of type (a), and at most
28 − (k

2

)
points on the pairs of type (b). We can get at most 5k + 28 − (k

2

)
points. Note

that the quadratic function 5k + 28 − (k
2

) = − k2

2 + 11k
2 + 28 obtains its maximum 43

(for integers k) at k = 5 or k = 6. Thus, we can get at most 43 points with this initial
distribution, establishing our claim and completing our solution.

Gerhard Woeginger suggested this problem.

USAJMO Problems

J1. A permutation of the set of positive integers [n] = {1, 2, . . . , n} is a sequence
(a1, a2, . . . , an) such that each element of [n] appears precisely one time as a term
of the sequence. For example, (3, 5, 1, 2, 4) is a permutation of [5]. Let P(n) be the
number of permutations of [n] for which kak is a perfect square for all 1 ≤ k ≤ n.
Find with proof the smallest n such that P(n) is a multiple of 2010.

J2. Let n > 1 be an integer. Find, with proof, all sequences x1, x2, . . . , xn−1 of positive
integers with the following three properties:

(a) x1 < x2 < · · · < xn−1;

(b) xi + xn−i = 2n for all i = 1, 2, . . . , n − 1;

(c) given any two indices i and j (not necessarily distinct) for which xi + x j < 2n,
there is an index k such that xi + x j = xk .

J4. A triangle is called a parabolic triangle if its vertices lie on a parabola y = x2. Prove
that for every nonnegative integer n, there is an odd number m and a parabolic triangle
with vertices at three distinct points with integer coordinates with area (2nm)2.

J5. Two permutations a1, a2, . . . , a2010 and b1, b2, . . . , b2010 of the numbers 1, 2, . . . ,

2010 are said to intersect if ak = bk for some value of k in the range 1 ≤ k ≤ 2010.
Show that there exist 1006 permutations of the numbers 1, 2, . . . , 2010 such that any
other such permutation is guaranteed to intersect at least one of these 1006 permuta-
tions.

USAJMO Solutions

J1. Every integer in Sn can be uniquely written in the form x2 · q, where q is either 1 or
square free. Let 〈q〉 denote the set {12 · q, 22 · q, 32 · q, . . . }.

Note that for f to satisfy the square-ness property, it must permute 〈q〉 for every q.
To see this, notice that given an arbitrary square-free q, in order for q · f (q) to be a
square, f (q) needs to contribute one of every prime factor in q, after which it can take
only even powers of primes. Thus, f (q) is equal to the product of q and some perfect
square.
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The number of f that permute the 〈q〉 is equal to

∏
q≤n

q is square-free

⌊√
n

q

⌋
!

For 2010 = 2 · 3 · 5 · 67 to divide P(n), we simply need 67! to appear in this product,
which will first happen in 〈1〉 so long as

√
n/q ≥ 67 for some n and q. The smallest

such n is 672 = 4489.
Andy Niedermaier suggested this problem.

J2. Assume x1, x2, . . . , xn−1 satisfies the conditions. By condition (a)

x1, 2x1, x1 + x2, x1 + x3, x1 + x4, . . . , x1 + xn−2

is an increasing sequence. By condition (c), this new sequence is a subsequence of
the original sequence. Because both sequences have exactly n − 1 terms, these two
sequences are identical; that is, 2x1 = x2 and x1 + x j = x j+1 for 2 ≤ j ≤ n − 2.
It follows that x j = j x1 for 1 ≤ j ≤ n − 1. By condition (b), (x1, x2, . . . , xn−1) =
(2, 4, . . . , 2n − 2).

Razvan Gelca suggested this problem. Richard Stong suggested the given solution.

J4. Let A = (a, a2), B = (b, b2), and C = (c, c2), with a < b < c. Then the area of
triangle ABC is

[ABC] = (2nm)2 = (b − a)(c − a)(c − b)

2
.

Set b − a = x and c − b = y (where both x and y are positive integers), the above
equation becomes

(2nm)2 = xy(x + y)

2
. (3)

If n = 0, we take m = x = y = 1. If n = 1, we take m = 3, x = 1, y = 8. Assume
that n ≥ 2. Let a, b, c be a primitive Pythagorean triple with b even. Let b = 2r d
where d is odd and r ≥ 2. Let x = 22k , y = 22kb, and z = 22kc where k ≥ 0. We let
m = adc and r = 2 if n = 3k + 2, r = 3 if n = 3k + 3, and r = 4 if n = 3k + 4.

Assuming that x = a · 2s , y = b · 2t , other triples are possible:

(a) If n = 3k, then let m = 1 and x = y = 22k .

(b) If n = 3k + 1, then take m = 3, x = 22k , y = 22k+3.

(c) If n = 3k + 2, then take m = 63, x = 49 · 22k , and y = 22k+5.

Zuming Feng suggested this problem. Jacek Fabrykowski suggested the given
solution.

J5. Create 1006 permutations X1, X2, . . . , X1006, the first 1006 positions of which are all
possible cyclic rotations of the sequence 1, 2, 3, 4, . . . , 1005, 1006, and the remaining
1004 positions are filled arbitrarily with the remaining numbers 1007, . . . , 2009, 2010:

We claim that at least one of these 1006 sequences has the same integer at the same
position as the initial (unknown) permutation. Suppose not. Then the set of the first (the
left) 1006 integers of every sequence Xi , i = 1, . . . , 1006, contains no integers from
1007 to 2010, but there are only 1004 such integers, therefore any other permutation
must have two of the integers 1, 2, 3, 4, . . . , 1005, 1006 within the first 1006 places.
Consequently, at least two sequences Xi satisfy the conclusion of the problem.

Gregory Galperin suggested this problem.



VOL. 83, NO. 4, OCTOBER 2010 319

2010 Olympiad Results. The top twelve students on the 2010 USAMO were (in alpha-
betical order):

Timothy Chu 12 Lynbrook High School San Jose CA
Calvin Deng 9 William G. Enloe High School Raleigh NC
Michael Druggan 11 Tates Creek High School Lexington KY
Brian Hamrick 12 Thomas Jefferson High School Alexandria VA
Travis Hance 12 Lakota West High School West Chester OH
Xiaoyu He 10 Acton-Boxborough High School Acton MA
Mitchell Lee 10 Thomas Jefferson High School Alexandria VA
In Sung Na 11 Northern Valley High School Old Tappan NJ
Evan O’Dorney 11 Berkeley Math Circle Berkeley CA
Toan Phan 12 Taft School Watertown CT
Hunter Spink 11 Western Canada High School Calgary AB
Allen Yuan 11 Detroit Country Day School Beverly Hills MI

The top thirteen students on the 2010 USAJMO were (in alphabetical order):

Yury Aglyamov 9 Liberal Arts and Science Academy HS Austin TX
Ravi Bajaj 10 Phillips Exeter Academy Exeter NH
Evan Chen 8 Horner Junior High School Fremont CA
Zijing Gao 9 North Carolina State University Raleigh NC
Gill Goldshlager 9 Walton High School Marietta GA
Youkow Homma 10 Carmel High School Carmel IN
Jesse Kim 9 Henry M. Gunn High School Palo Alto CA
Sadik Shahidain 10 Princeton High School Princeton NJ
Alexander Smith 9 La Plata High School La Plata MD
Susan Di Yun Sun 10 West Vancouver SS Vancouver BC
Jiaqi Xie 10 Cypress Bay High School Weston FL
Jeffrey Yan 9 Palo Alto High School Palo Alto CA
Kevin Zhou 10 Woburn CI North York ON

Allen Yuan received a $20,000 scholarship from the Akamai Foundation for first place
and Xiaoyu He and Toan Phan received a $12,500 scholarship for tying for second place
on the IMO. Each of the 12 USAMO winners received a $500 bond from Robert Balles.
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51st International Mathematical Olympiad
ZUMING FENG

Phillips Exeter Academy
Exeter, NH 03833
zfeng@exeter.edu

PO-SHEN LOH
Carnegie Mellon University

Pittsburgh, PA 15213
ploh@cmu.edu

Y I SUN
952 Windsor Hills Circle

San Jose, CA 95123
yi.sun@post.harvard.edu

Problems (Day 1)

1. Determine all functions f : R → R such that the equality

f (�x�y) = f (x)� f (y)�
holds for all x, y ∈ R. (Here �z� denotes the greatest integer less than or equal to z.)

2. Let I be the incentre of triangle ABC and let � be its circumcircle. Let the line AI
intersect � again at D. Let E be a point on the arc B̂DC and F a point on the side BC
such that

� BAF = � CAE < 1
2
� BAC.

Finally, let G be the midpoint of the segment IF. Prove that the lines DG and EI intersect
on �.

3. Let N be the set of positive integers. Determine all functions g : N → N such that
(
g(m) + n

)(
m + g(n)

)
is a perfect square for all m, n ∈ N.

Problems (Day 2)

4. Let P be a point inside triangle ABC. The lines AP, BP, and CP intersect the circum-
circle � of triangle ABC again at the points K , L , and M , respectively. The tangent to
� at C intersects the line AB at S. Suppose that SC = SP. Prove that MK = ML.

5. In each of six boxes B1, B2, B3, B4, B5, B6 there is initially one coin. There are two
types of operation allowed:

Type 1: Choose a nonempty box B j with 1 ≤ j ≤ 5. Remove one coin from B j and
add two coins to B j+1.

Type 2: Choose a nonempty box Bk with 1 ≤ k ≤ 4. Remove one coin from Bk and
exchange the contents of (possibly empty) boxes Bk+1 and Bk+2.

Determine whether there is a finite sequence of such operations that results in boxes B1,
B2, B3, B4, B5 being empty and box B6 containing exactly 201020102010

coins. (Note that
abc = a(bc).)

Math. Mag. 83 (2010) 320–323. doi:10.4169/002557010X528041. c© Mathematical Association of America
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6. Let a1, a2, a3, . . . be a sequence of positive real numbers. Suppose that for some posi-
tive integer s, we have

an = max{ak + an−k | 1 ≤ k ≤ n − 1}
for all n > s. Prove that there exist positive integers � and N , with � ≤ s and such that
an = a� + an−� for all n ≥ N .

Solutions

1. The answer is f (x) = c for all x , where c = 0 or 1 ≤ c < 2. To prove that these are the
only possible solutions, consider two cases. First suppose that � f (y)� = 0 whenever
0 ≤ y < 1. Then f (�x�y) = f (x)� f (y)� = 0 whenever 0 ≤ y < 1. Since every real
number can be represented as a product of the form �x�y with x ∈ R and 0 ≤ y < 1, in
this case f is identically zero.

Otherwise, suppose � f (y0)� �= 0 for some 0 ≤ y0 < 1. For any xn satisfying
n ≤ xn < n + 1, set y = y0 and x = xn in the given equality to obtain f (ny0) =
f (xn)� f (y0)�. Letting cn = f (ny0)� f (y0)� , it follows that f (xn) = cn for all xn ∈ [n, n+1).
In particular, we have �c0� = � f (y0)� �= 0, hence c0 �= 0. Now set x = y = 0 in the
given equality to obtain c0 = f (0) = f (0)� f (0)� = c0�c0�, hence �c0� = 1. Finally,
setting y = 0 and x = n in the given equality, we find cn = f (n) = f (0)

� f (0)� = c0�c0� = c0.
Therefore, in this case we have f (x) = c0 for all x , and �c0� = 1.

This problem was proposed by Pierre Bornsztein of France.

2. Let P be the second intersection of ray EI and �, and let segments PD and FI meet
at M . We wish to show that M = G, or, equivalently, FM = MI. Let Q be the inter-
section of segments PD and AF. Applying Menelaus’s theorem to triangle AFI and line
QMD gives FQ·AD·IM

QA·DI·MF = 1. Hence it suffices to show that FQ·AD
QA·DI = 1 or equivalently that

AD/AQ = (DI + DA)/FA.
Triangles QAD and IAE are similar, so AD/AQ = EA/AI. Also, triangles ABF and

AEC are similar, so we have AF/AB = AC/AE. Together these imply that AD
AQ = AB·AC

AF·AI .
Now, let H be the intersection of BC and AD; notice that triangles DHC and DCA
are similar, hence DC2 = DH · DA. Now because � DCI = � CID, we have DC = DI,
hence DA2 − DI2 = DA2 − DC2 = DA2 − DH · DA = DA · HA. On the other hand,
notice that triangles ABH and ADC are similar, so DA · HA = AB · AC. Putting these
together, we see that AD

AQ = AB·AC
AF·AI = DA·HA

AF·AI = DI+DA
FA , as needed.

This problem was proposed by Wai Ming Tai of Hong Kong and Chongli Wang of
China.

3. All functions of the form g(n) = n + c for a constant nonnegative integer c satisfy the
problem conditions. We claim that these are the only such functions.

We first show that g must be injective. Suppose instead that g(a) = g(b) for some
a �= b. Choose n so that n + g(a) = p is prime and greater than |a − b|. From the
hypothesis both p(g(n) + a) and p(g(n) + b) must be perfect squares, meaning that
g(n) + a and g(n) + b are both divisible by p. But this is impossible, as p > |a − b|.
Therefore, g is injective as claimed.

We now show that |g(k + 1) − g(k)| = 1 for all k. Suppose instead that some prime
p divides g(k + 1) − g(k). Now, choose an integer n as follows. If p2 | g(k + 1) −
g(k), then take n so that n + g(k + 1) is divisible by p but not p2. Otherwise, take
n so that n + g(k + 1) is divisible by p3 but not p4. Note that the maximum power
of p dividing n + g(k + 1) and n + g(k) is odd. Now, the hypothesis implies that
(n + g(k + 1))(g(n) + k + 1) and (n + g(k))(g(n) + k) are both squares, meaning that
g(n) + k + 1 and g(n) + k are both divisible by p, a contradiction.

For each k, we now have either g(k + 1) = g(k) + 1 or g(k + 1) = g(k) − 1. But g
is injective, so if the latter occurs for some k, then it occurs for all k ′ > k, an impossi-
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bility because g takes positive values. Therefore, we have g(k + 1) = g(k) + 1 for all
k, hence g(k) = k + g(1) − 1.

This problem was proposed by Gabriel Carroll of the USA.

4. Without loss of generality, we may assume that S is on ray BA. Set x1 = � PAB,
y1 = � PBC, z1 = � PCA, x2 = � PAC, y2 = � PBA, and z2 = � PCB. Because SC
is tangent to �, we have SC2 = SA · SB by the Power of a Point Theorem, and
� SCP = � SCM = � ACM + � ACS = z1 + � ABC = z1 + y1 + y2. Because SP = SC,
we have SP2 = SC2 = SA · SB, so triangles SAP and SPB are similar. It follows that
� SPA = � SBP = y2 and that � ASP = � BAP − � SPA = x1 − y2. Now, SP = SC im-
plies � SPC = � SCP = z1 + y1 + y2, so � PSC = 180◦ − 2(z1 + y1 + y2) = x1 + x2 +
z2 − (z1 + y1 + y2). Notice that � ASC = � BAC − � ACS = (x1 + x2) − (y1 + y2),
so we have � ASP = � ASC − � PSC = z1 − z2. Combining our two computations of
� ASP yields x1 − y2 = z1 − z2 or x1 + z2 = y2 + z1. That is, we have (K̂B + B̂M)/2 =
(L̂A + ÂM)/2, hence K̂M/2 = L̂M/2 and MK = ML.

This problem was proposed by Marcin E. Kuczma of Poland.

5. The answer is yes. Although the problem specifies that the number of boxes is n = 6,
the operations extend in the obvious way to general values of n. Our proof will consider
several different values of n on the way to the final result. For this, it is convenient to let
(b1, . . . , bn) denote the n-box configuration where b1 balls are in box B1, b2 balls are
in box B2, etc. Write (b1, . . . , bn) → (b′

1, . . . , b′
n) if we can obtain the configuration

(b′
1, . . . , b′

n) from (b1, . . . , bn) following the rules in the n-box setting. We begin with
two lemmas.

LEMMA 1. Let a be a positive integer. Then (a, 0, 0) → (0, 2a, 0).

Proof. We will show that (a, 0, 0) → (a − k, 2k, 0) for every 1 ≤ k ≤ a, by induct-
ing on k. For k = 1, applying a Type 1 operation to the first number gives (a, 0, 0) →
(a − 1, 2, 0) = (a − 1, 21, 0). Now assume the statement holds for some k < a. Start-
ing from (a − k, 2k, 0), repeatedly applying 2k many Type 1 operations at the middle
box yields (a − k, 2k, 0) → · · · → (a − k, 0, 2k+1). A final Type 2 operation applied
at the first box produces (a − k, 0, 2k+1) → (a − k − 1, 2k+1, 0), completing the in-
duction.

LEMMA 2. Define Pn = 22..
.2

︸︷︷︸
n

. Then (a, 0, 0, 0) → (0, Pa, 0, 0) for every positive

integer a.

Proof. We will show that (a, 0, 0, 0) → (a − k, Pk, 0, 0) for 1 ≤ k ≤ a, by induct-
ing on k. For k = 1, a Type 1 operation applied at the first box gives (a, 0, 0, 0) →
(a − 1, P1, 0, 0). Now assume that (a, 0, 0, 0) → (a − k, Pk, 0, 0) for some a < k.
Applying Lemma 1 to the last three boxes, we obtain (a − k, Pk, 0, 0) → (a − k, 0,

Pk+1, 0). A final Type 2 operation applied at the first box gives (a − k, 0, Pk+1, 0) →
(a − k − 1, Pk+1, 0, 0), completing our induction.

We now describe the construction for the original 6-box setting. Write A =
201020102010

. First, apply a Type 1 operation to B5, giving (1, 1, 1, 1, 1, 1) → (1, 1, 1,

1, 0, 3). Second, apply Type 2 operations to B4, B3, B2, and B1 in this order, ob-
taining (1, 1, 1, 1, 0, 3) → (1, 1, 1, 0, 3, 0) → (1, 1, 0, 3, 0, 0) → (1, 0, 3, 0, 0, 0) →
(0, 3, 0, 0, 0, 0). Third, apply Lemma 2 twice, giving the sequence (0, 3, 0, 0, 0, 0) →
(0, 0, P3, 0, 0, 0) → (0, 0, 0, P16, 0, 0). It is easy to check that P16 > A, so there are
more than A = 201020102010

coins in B4 at this point. Fourth, decrease the number of
coins in B4 by applying Type 2 operations repeatedly to B4 until its size decreases
to A

4 . This gives (0, 0, 0, P16, 0, 0) → · · · → (
0, 0, 0, A

4 , 0, 0
)
. Finally, apply Type 1
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operations repeatedly to first empty B4 and then B5, obtaining
(
0, 0, 0, A

4 , 0, 0
) →

· · · → (
0, 0, 0, 0, A

2 , 0
) → · · · → (0, 0, 0, 0, 0, A), as desired.

This problem was proposed by Hans Zantema of Netherlands.
Note. Following a practice established last year, Fields Medalist (and IMO gold

medalist) Terence Tao hosted an online project for others to collaborate in solving
this problem, which he identified as the most challenging problem on the exam (http:
//polymathprojects.org/2010/07/08/minipolymath2-project-imo-2010-q5/).

6. We generalize to the setting where the an may assume negative values. For any r ∈ R,
note that the transformation an �→ an + rn does not change the problem conditions or
the result to be proved. Picking � ≤ s such that a�/� is maximal, we can thus assume
without loss of generality that a� = 0. This means all of a1, . . . , as are non-positive,
hence all an are non-positive. Let bn = −an ≥ 0. For n > s, we have bn = min{bk +
bn−k | 1 ≤ k ≤ n − 1} and in particular bn ≤ bn−� + b� = bn−�.

From this, we draw two conclusions. First, all bn must be bounded above by M =
max{b1, . . . , bs}. Second, if we let S be the set of all linear combinations of the form
c1b1 + c2b2 + · · · csbs , where the ci are nonnegative integers, and let T = {x ≤ M :
x ∈ S}, then since bn = min{bk + bn−k | 1 ≤ k ≤ n − 1}, it is clear that every bn must
be in T . Crucially, T is a finite set.

Now, for each integer i satisfying �i + 1 > s, let βi denote the �-tuple (b�i+1,

b�i+2, . . . , b�i+�). By the previous paragraph, the number of such �-tuples is at most
|T |�, a finite number. Further, because bn ≤ bn−� for n > s, the individual indices of
these βi are non-increasing functions of i . Thus, there can only be finitely many i for
which βi �= βi+1. Let i0 be greater than the largest such value; then, all �-tuples βi with
i ≥ i0 are identical. Choosing N = �(i0 + 1) finishes the problem, since any n ≥ N
gives bn = bn−� = b� + bn−�.

This problem was proposed by Morteza Saghafian of Iran. This solution is by Evan
O’Dorney.

Results. The IMO was held in Astana, Kazakhstan, on July 7–8, 2010. There were 517
competitors from 96 countries and regions. On each day contestants were given four and a
half hours for three problems.

On this challenging exam, a perfect score was achieved by only one student, Zipei Nie
(China). The USA team ranked third, behind China and Russia. Although the American
team has consistently finished in the top ten at the IMO, this year’s performance was par-
ticularly impressive because none of the team members were in their final year of high
school. The students’ individual results were as follows.

• Calvin Deng, who finished 9th grade at William G. Enloe High School in Raleigh, NC,
won a silver medal.

• Ben Gunby, who finished 10th grade at Georgetown Day School in Washington, DC,
won a gold medal.

• Xiaoyu He, who finished 10th grade at Acton-Boxborough Regional High School in
Acton, MA, won a gold medal.

• In-Sung Na, who finished 11th grade at Northern Valley Regional High School in Old
Tappan, NJ, won a silver medal.

• Evan O’Dorney from Danville, CA, who finished 11th grade (homeschooled through
Venture School), won a gold medal. Furthermore, he placed 2nd overall with a score of
39/42. For his spectacular performance, he received a private congratulatory telephone
call from the President of the United States, Barack Obama.

• Allen Yuan, who finished 11th grade at Detroit Country Day School in Beverly Hills,
MI, won a silver medal.
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2010 Carl B. Allendoerfer Awards

The Carl B. Allendoerfer Awards, established in 1976, are made to authors of expository
articles published in Mathematics Magazine. The Awards are named for Carl B. Allen-
doerfer, a distinguished mathematician at the University of Washington and President of
the Mathematical Association of America, 1959–1960.

Ezra Brown and Keith Mellinger, “Kirkman’s Schoolgirls Wearing Hats and Walking
Through Fields of Numbers,” Mathematics Magazine, 82:1 (2009), pp. 3–15.

The historical basis for this interesting article is a problem in recreational mathematics
posed by T. P. Kirkman in 1850. Kirkman’s problem states:

“Fifteen young ladies of a school walk out three abreast for seven days in succession:
it is required to arrange them daily so that no two shall walk abreast more than once.”

Using this problem as a springboard, the authors treat the reader to a captivating exploration
of the theory and applications of block designs. In the process, solutions to the schoolgirls
problem are uncovered in such seemingly unrelated areas as the subfield structure of alge-
braic number fields and the configuration of “spreads” and “packings” in finite projective
geometry.

Additional connections to the schoolgirls problem are revealed by the authors’ exten-
sion of Todd Ebert’s “Three Hats” problem to an analogous problem involving fifteen hats.
Their solution to this extension is based upon an interesting relationship between Kirk-
man’s problem and the theory of error correcting codes. In particular, a solution to the
schoolgirls problem leads to a Hamming code, which then can be used to solve the fifteen
hats problem.

This well-written and accessible article invites the reader to join the authors on a fas-
cinating journey into the modern theory of block designs and the surprising connections
of these designs to diverse areas of mathematics. Readers who accept the invitation will
be left with both a deeper understanding of Kirkman’s problem and an appreciation of the
ubiquitous nature of its solution.

Biographical Notes

Ezra (Bud) Brown grew up in New Orleans, has degrees from Rice and Louisiana State
University, and has been at Virginia Tech since 1969, where he is currently Alumni Dis-
tinguished Professor of Mathematics. His research interests include number theory and
combinatorics. He particularly enjoys discovering connections between apparently unre-
lated areas of mathematics and working with students who are engaged in research. He has
been a frequent contributor to the Mathematical Association of America journals, and he
just finished a term as the Maryland, District of Columbia, and Virginia Section Governor.
He and Art Benjamin edited Biscuits of Number Theory, a collection of number theory
articles published in 2009 by the Mathematical Association.

In his spare time, Bud enjoys singing (from opera to rock and roll), playing jazz piano,
and talking about his granddaughter Phoebe Rose. Under the direction of his wife Jo, he has
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become a fairly tolerable gardener, and the two of them enjoy kayaking. He occasionally
bakes biscuits for his students, and he once won a karaoke contest.

Originally from Lancaster County, Pennsylvania, Keith E. Mellinger graduated with his
Ph.D. in mathematics from the University of Delaware and was a post-doc at the University
of Illinois at Chicago before moving to the University of Mary Washington in 2003. He
is currently an Associate Professor and Chair of the Department of Mathematics at the
University of Mary Washington. His research interests are in discrete mathematics, usually
connected to finite geometry, and he regularly mentors undergraduate researchers. In 2005
he earned a research grant from the National Security Agency, and in 2008 he won the
Outstanding Young Faculty Award presented by the University of Mary Washington.

Outside of mathematics, Keith is a decent cook, an average tennis player, and an accom-
plished musician. He has performed in different bands over the years, usually on acoustic
guitar. However, most of his time outside the office these days is spent with his two beau-
tiful children, Gabriel and Cecilia.

Response from Ezra Brown and Keith Mellinger. It was in graduate school that each of
us first learned Thomas P. Kirkman’s elegant solution to his Fifteen Schoolgirls problem,
Bud in Dave Roselle and Brooks Reid’s graduate course in Combinatorics, and Keith in
Gary Ebert’s similar course. In both of us, there began a fascination with combinatorial
designs, and both of us have written on the topic for Mathematics Magazine in the past.
It happens that Kirkman’s solution turns up in a variety of different settings, including
algebraic number fields, finite geometries, coding theory, and the so-called fifteen hats
problem in recreational mathematics. We had this wild idea of presenting our discoveries
to a general audience, and so we wrote this paper together.

Actually, truth be told, we wrote the paper for each other. We will be forever grateful
to Frank Farris, who pointed out that we need to stop writing for each other and start
writing for others. Frank, they just don’t pay you enough. We want to thank the paper’s
two referees, who suggested numerous improvements that greatly improved the paper’s
readability—and how! We also thank our families for their support and encouragement
over the years. It is a great honor to receive the Allendoerfer Award: we are truly grateful
for all that the Mathematical Association of America does for our community!

David Speyer and Bernd Sturmfels, “Tropical Mathematics,” Mathematics Magazine,
92:3 (2009), pp. 163–173.

Contrary to popular opinion, mathematics is not static. New branches of mathematics are
born and develop in response to impulses from within the subject and from areas of appli-
cation. But it is hard to find good expository articles which capture the excitement of a new
field. This article by David Speyer and Bernd Sturmfels succeeds brilliantly in making the
tropical approach to mathematics attractive and accessible to a wide readership.

The adjective “tropical” was chosen by French mathematicians to honor Imre Simon,
the Brazilian originator of min-plus algebra, which grew into this field. The basic object
of study is the tropical semiring consisting of the real numbers R with a point at infinity
under the operations of ⊕ equals minimum and � equals plus. The arithmetic and algebra
of this simple number system yield surprising connections with well-studied branches of
classical mathematics. For example, tropical polynomials in n variables are precisely the
piecewise-linear concave functions on Rn with integer coefficients.

Further developments and generalizations connect with combinatorics, algebraic geom-
etry, and computational biology. This article offers an introduction to diverse aspects of
this new subject. Each section begins with very elementary material and ends with re-
search problems. In a short amount of space the authors manage to convey the depth of this
attractive new field and its broad reach.
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Biographical Notes

David Speyer has just begun serving as an associate professor of mathematics at the Uni-
versity of Michigan. Before that, he was a research fellow funded by the Clay Mathematics
Institute. He has an A.B. and a Ph.D. in mathematics, from Harvard University and the Uni-
versity of California Berkeley, respectively. Speyer’s research focuses on problems which
combine questions of algebraic geometry and combinatorics; both the many such questions
which arise in tropical geometry and those which occur in the study of classical algebraic
varieties and representation theory. He blogs at http://sbseminar.wordpress.com.

Bernd Sturmfels received doctoral degrees in mathematics in 1987 from the University
of Washington, Seattle, and the Technical University Darmstadt, Germany. After two post-
doctoral years in Minneapolis and Linz, Austria, he taught at Cornell University, before
joining the University of California Berkeley in 1995, where he is Professor of Mathemat-
ics, Statistics, and Computer Science. His honors include a National Young Investigator
Fellowship, a Sloan Fellowship, a David and Lucile Packard Fellowship, a Clay Senior
Scholarship, and an Alexander von Humboldt Senior Research Prize. Presently, he serves
as Vice President of the American Mathematical Society. A leading experimentalist among
mathematicians, Sturmfels has authored or edited fifteen books and 180 research articles,
in the areas of combinatorics, algebraic geometry, polyhedral geometry, symbolic compu-
tation, and their applications. His current research focuses on algebraic methods in opti-
mization, statistics, and computational biology.

Response from David Speyer. I am highly honored to receive the Carl B. Allendoerfer
Award. Tropical mathematics is an exciting but frustrating field to introduce people to: the
motivating computations are extremely explicit and elegant, but learning what questions to
ask often requires absorbing a great deal of background and sophisticated technology. We
hope that our article has helped explain what this field is about and excited our readers to
consider entering it.

If it is odd to say so, it is also true that my first thanks should go to my co-author and
advisor Bernd, who has driven me both to discover and to expound tropical mathematics.
I also want to thank the Clay Institute for their support of my research. Finally, I must
thank my fellow graduate students at the University of California Berkeley where I began
writing this article and my colleagues at the Massachusetts Institute of Technology where
I finished it, for listening to my many attempts to explain the tropical perspective.

Response from Bernd Sturmfels: It is a great honor for me receive the Carl B. Allen-
doerfer Award for the article with David Speyer on tropical mathematics. This prize means
a lot to me, especially since I find myself following in the footsteps of my late advisor, Vic-
tor Klee, who received this award in 1999. Vic’s passion for the combinatorics of convex
polyhedra has been a great inspiration for me over the years.

Tropical mathematics is a delightful subject that challenges our basic assumptions about
arithmetic and geometry and thus leads us to a deeper understanding of familiar structures
we are so accustomed to. It has been a great pleasure for me to embark on the tropical
journey with numerous students and postdocs. I wish to thank them for being so patient
with their impatient mentor.

Please allow me also to use this opportunity to share my view that the Mathematical
Association of America is doing a marvelous job in its various programs. They have al-
ways reminded me of the unity of mathematics, and the fact that the benefits of integrating
research with teaching at all levels cannot be overestimated.
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Pronouncing “Oresme”
(From the Editor)

In an article in this MAGAZINE (February 2010) Olympia Nicodemi gave the pronunciation
hint “Orezzmay” for the name of Nicole Oresme, who lived in the Normandy region of
France in the 14th Century. Was it right?

Fernando Gouvea wrote to express doubt. “Most folks I know pronounce his name
something like oh-RHAYM, though of course you should ask someone from France to be
sure.” For such questions he suggested this useful website: http://www.waukesha.uwc.
edu/mat/kkromare/up.html.

“Well, it’s quite complicated,” writes Professor Nicodemi. “The pronunciation clue
‘Orezzmay’ was a quick insertion of my own at the Editor’s request, unresearched but not
entirely unfounded. The French say ‘Oreme’ and spell it that way. At one time, of course,
all the esses were pronounced, as in cotes-coast. One of the times of change was the 14th
century, just when he lived. And whether it is French or Latin is a question. I have asked
a colleague in our French Department about it. One of the ways they guess (her phrase)
at pronunciation is through rhyme schemes in poetry. In Oresme’s time, ‘quaresme’ was
found rhymed with ‘escame’ indicating that the ess in ‘esme’ was not pronounced. But it
was quite fluid.”

Here is another relevant website: http://hsci.cas.ou.edu/exhibits/exhibit.php?
exbid=45&exbpg=1. It is a wonderful website, rich in information about early science. At
this site you will find Oresme himself telling students how to pronounce his name, if you
believe him. I wrote to Kerry Magruder, Curator of the History of Sciences Collections at
Oklahoma University, whose site it is. His reply:

Professor Nicodemi’s account seems exactly on target to me. It agrees with what I
have always heard among historians of science; namely, that although pronunciation
was going through a transition, the best guess (based on rhyming patterns, as noted)
is that even though the “s” was still included, without the circumflex accent, it was
not pronounced. So Oresme himself most likely would have pronounced his name,
so far as can now be determined, as “Or–em.”

But the more I think about it the less certain I am. Maybe the question of pronun-
ciation is unsolvable. Perhaps it is a modern question, based on the assumption that
one would always spell or pronounce one’s name the same way. In the transmission
of Oresme’s works there appears to have been some variation, at least in spelling, so
that the quest for an original spelling (let alone pronunciation) may be unsolvable.
Edward Grant, for instance, lists the following early versions of Oresme’s spelling in
French: Oresmius, Oréme, Oresmes, d’Oresme, d’Oresmieux, Orem, and Orême [1,
p. 3, citing Meunier]. So I’m not sure where this leaves us.

He also passes along this from Steven J. Livesey, a professor of medieval science at
Oklahoma:

I suspect that the pronunciation—to the extent that it is even recoverable—is a re-
gionalism and dependent on oral transmission of the text. So when copies of De
proportionibus were circulating in Italy or Poland, for example, librarians may have
written their own contents lists on flyleaves based on the local pronunciation, not the
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way the name was pronounced in Paris or Lisieux, to say nothing of how Oresme
himself pronounced his name. (And my own experience with a confusing surname
suggests that some people give up correcting others’ pronunciation and allow for
variation.)

Edward Grant comments, “I have always pronounced the name as ‘orayme’ (or ‘oh-
Rhaym’) as have all other Oresme scholars that I know, but I cannot say how it was actually
pronounced in the 14th century.”

The “ay” part of the original hint is probably wrong. The final vowel was either silent or
barely pronounced, since there is no accent (not “Oresmé”). The weight of opinion seems
to favor not pronouncing the “s” either, although that is much less certain. But just as we
converge on a single view, Gouvea passes along another website, http://www.forvo.com/
word/nicolas_oresme/, where a modern speaker clearly pronounces the “s.”

Can anyone provide a better answer?

REFERENCE

1. Edward Grant, ed. and trans., Nicole Oresme: De proportionibus proportionum and Ad pauca respicientes,
Univ. of Wisconsin Press, Madison, WI, 1966.
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